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Abstract
Almost any financial market exhibits alternating periods of rising and falling prices, as shown
in the graphic below. Stock traders have to mind those trends to make profitable investment
decisions. So far and among other models, the hidden Markov model has been used to quantify
the trend changes in order to predict upcoming market behaviour. However, this model in
its basic form is not capable of capturing short-term and long-term trends jointly. Extending
the model by a hierarchical structure, this thesis fixes this deficit, aiming to draw a more
comprehensive picture of the financial market. The improvement is exemplary investigated
for the Deutscher Aktienindex. Modelling financial data with the hierarchical hidden Markov
model can lead to more sophisticated trading strategies.
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1 Introduction

The formula for earning money at the stock market is simple: Buy and sell stocks at the proper
moment. Generally speaking, stock traders want to invest at the beginning of an upwards trend
(bullish market) and repel the shares just in time before the price drops (bearish market). As
the stock price depends on a variety of environmental influences, luck is certainly involved
in hitting those exact moments. However, an investigation of the market behaviour yields a
better understanding how trends alternate and thereby increases the chance of making profitable
investment decisions. Various models of market volatility have been considered, see for example
[Pagan and Schwert, 1990]. This thesis aims to improve those investigations by applying the
hierarchical extension of the hidden Markov model. The model will be used to detect past
trends in the most important German stock index, the Deutscher Aktienindex (DAX), and to
reveal their characteristics.
The hidden Markov model has been used several times to model financial data. In [Lihn, 2017],

it is applied to the American S&P 500 index. The model states are identified as different levels
of market volatility, aiming to verify the empirical law that return is negatively correlated to
volatility. Another application to the same index can be found in [Nguyen, 2018], where four
states are used to predict monthly closing prices. Based on the model results, a trading strategy
is derived which outperforms the conventional buy-and-hold strategy. [Hassan and Nath, 2005]
presents another field of application, applying the model to predict prices in the setting of air-
line stocks. All three papers conclude that the hidden Markov model is well suited to explain
or forecast stock market data.
In its basic form however, the hidden Markov model operates on a single time scale and

therefore it is not capable of capturing short-term and long-term trends jointly. This is a major
deficit because the model can easily misinterpret short-term price fluctuations as a change in
the long-term trend and hence might draw a distorted picture of the market behaviour. The
main objective of this thesis lies in fixing this deficit by adding a hierarchical structure to
the hidden Markov model and thereby improving the distinctness of short-term and long-term
trends.
The hierarchical generalization of the hidden Markov model originates in the field of machine

learning. In [Fine et al., 1998], the hierarchical hidden Markov model is used for handwriting
recognition where hierarchical levels appear as letters, syllables and words. Recently, the model
turned out to be beneficial for modelling animal movement data, cf. [Leos-Barajas et al., 2017]
where the hierarchical structure allows for behavioural inference at two different time scales.
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CHAPTER 1. INTRODUCTION

A slightly extended approach is done in [Adam et al., 2019], where a second observation layer
is incorporated to model animal movement data on two different temporal resolutions. Both
papers conclude that the hierarchical hidden Markov model improves the inference of animal
movement behaviour in comparison to the hidden Markov model.
This work transfers the approach of [Adam et al., 2019] from animal movement inference to

modelling financial data. Exemplary, the hierarchical hidden Markov model will be applied to
closing prices of the DAX. We will investigate that the hierarchical model structure allows for
a more comprehensive picture of stock market behaviour by minding the difference between
short-term and long-term trends. The improvement can be used to develop more sophisticated
trading strategies. A brief outlook is provided.
The thesis is structured as follows: Chapter 2 introduces the DAX data we investigate.

Chapter 3 presents the methodology that will be applied to the data in Chapter 4. In Chapter
5, the findings will be discussed and possible future research will be addressed. Proofs and
estimated parameters of candidate models are appended.
Concluding the introduction, I would like to express my gratitude towards Professor Roland

Langrock for sharing his enthusiasm for hidden Markov models; towards Dr. Tetyana Pasurek
for her offer to review my thesis and towards my parents Dagmar and Bernd Oelschläger for
their support.

7



2 The DAX Data

For a start, this chapter briefly presents the background of the Deutscher Aktienindex and its
data. The following information are based on [Janßen and Rudolph, 1992].
The DAX in its current form exists since July 1, 1988 and established itself as the most

important German stock index. The index is computed as a weighted average over the share
prices of the 30 largest publicly traded companies in Germany. Thereby, intra-company price
changes are smoothed and the German market behaviour is well summarized. Formally, its
value It at time point t is

It =
∑
i pi,t · qi,t∗ · ci,t∑
i pi,t0 · qi,t0

·Kt∗ · 1000,

with i = 1, . . . , 30 the included companies, t0 the basis date (December 30, 1987), t∗ the time
point of the last adjustment, pi,t the share price and qi,t the capital of company i at time point
t, respectively, and ci,t and Kt∗ adjustment factors.
Nowadays, the index is updated every second during a trading day. Hence, a large amount

of data on a very fine temporal resolution is available. This immediately poses the question
of numerical processing effort, especially in our case: Beside short-term trends, we aim to
capture long-term trends, which potentially persist over a time span of several years. To limit
the processing effort, we only focus on the last update of each trading day (the daily closing
prices1). Furthermore, mind that the DAX is not updated at weekends or public holidays
because shares are not traded on these days. Assuming that the market behaviour is not
influenced at these days, we treat them as if they do not exist. Overall, this results in an
easy-to-handle amount of 4822 daily closing prices from years 2000 to 2018, which is the time
span investigated in this thesis.2

Instead of the daily closing prices (It)t, we model the time series (Xt)t with

Xt = log
[
It
It−1

]
, t ≥ 2,

which we refer to as the logarithm of the returns (log-returns).3 This transformation reveals
particular benefits from a modelling point of view, cf. Section 4.1. Obviously, results derived
on (Xt)t can be back-transformed to the more natural representations (exp[Xt]− 1)t or (It)t.4

1. The DAX itself is not a share. To simplify matters, we use the expressions price and return anyway.
2. The data was received from www.finance.yahoo.com on March 21, 2019.
3. Throughout this thesis, log refers to the natural logarithm.
4. The term exp[Xt]− 1 = [It − It−1]/It−1 equals the relative return from time point t− 1 to t.

8

www.finance.yahoo.com


CHAPTER 2. THE DAX DATA
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Figure 1: Visualization of the DAX data

Figure 1 is a visualization of (It)t on top and (Xt)t below. There, four outliers on September
11, 2001 and on three dates in October 2008 can be observed, marked in red. The former one
corresponds to a reaction of the German stock market to the 9/11 terrorist attack in America,
the latter ones can be interpreted as reactions to the German „Rettungsschirm“ (bailout) after
the financial crisis. I decided to remove these data points from the investigation because they
do not represent normal market behaviour. Summing up, we face the time series (Xt)t of
log-returns with a total of 4817 observations.

9



3 Methodology

This chapter introduces the methodology of the thesis. Section 3.1 recaps the basic hidden
Markov model, which is extended by a hierarchical structure in Section 3.2. Subsequently,
Section 3.3 states a formula for the likelihood function of the hierarchical hidden Markov model.
Section 3.4 discusses how to numerically maximize the likelihood function in order to get
estimates for the model parameter. Section 3.5 presents the Viterbi algorithm, which enables
us to decode the underlying states. Checking whether the model explains given data well can
be done by computing pseudo residuals, which are introduced in Section 3.6. The concepts and
notations of this chapter are based on [Zucchini et al., 2016] and [Adam et al., 2019].

3.1 The Hidden Markov Model
The hidden Markov model (HMM) is a statistical model for time series data. The model
predicates the idea that the behaviour of the nature can be divided into a finite number of
different states. It is not possible to directly determine which state is when active. However, at
each point in time, a data point is observed which depends on the current state of the nature
and thus yields information on the hidden state. This concept can be formulated more formally
introducing two stochastic processes:

1. At each time point t of the discrete time space {1, . . . , T}, an underlying process (St)t
selects one state from the state space {1, . . . , N}. We call (St)t the hidden state process.

2. Depending on which state is active at t, one of N distributions f (1), . . . , f (N) realises the
observation Xt. The process (Xt)t is called the observed state-dependent process.

We make some assumptions on these processes:

1. We assume that (St)t is a Markov process of first order (that means St+1 only depends
on St) and that (St)t is time-homogeneous. Thus, the process is identified by its initial
distribution δ and its transition probability matrix Γ.

2. The process (Xt)t is said to satisfy the conditional-independence assumption, that means
conditionally on the current state St, the observation Xt is independent of all other states
and observations.

10



CHAPTER 3. METHODOLOGY

Furthermore, from a practical point of view, it is reasonable to identify the initial distribution
of (St)t with its stationary distribution1 π for two reasons: On the one hand, the hidden state
process has been evolving for some time before our attention focused on it and thus can be
assumed to be stationary already. On the other hand, π is determined by Γ, and setting δ = π

reduces the amount of parameters that have to be estimated.
In case of financial data, the hidden states can be interpreted as different moods2 of the

market. These moods cannot be observed directly. However, price changes are observed which
clearly depend on the current mood. Thereby, using an underlying Markov process, we can
detect which mood is active at which point in time and how they alternate. Depending on
the current mood, a price change is realized by a unique distribution. These distributions
characterise the moods in terms of expected return and volatility.
The notations and properties of the HMM ingredients are summarized in the following table:

Ingredients Notations Properties
time space {1, . . . , T} finite
state space {1, . . . , N} finite
hidden state process (St)t first-order Markov process
initial probabilities δi = Pr(S1 = i) δi ∈ [0, 1]
initial distribution (row) vector δ = (δi)i

∑
i δi = 1

one-step transition probabilities γij = Pr(St+1 = j | St = i) γij ∈ [0, 1], time-homogenous
transition probability matrix Γ = (γij)i,j

∑
j γij = 1

stationary distribution (row) vector π = (πi)i
∑
i πi = 1, πΓ = π

state-dependent distributions f (1), . . . , f (N)

observed state-dependent process (Xt)t Xt ∼ f (i) given St = i

Table 1: Ingredients of the HMM

3.2 Adding a Hierarchical Structure
The HMM can be extended by a hierarchical structure, which will be considered as hierarchical
hidden Markov model (HHMM). In the following, a procedure is described how to incorporate
a second hierarchy level. This procedure can recursively be applied several times in order to
achieve any desired number of hierarchies. In this thesis, two hierarchies are considered.

1. If the Markov process is irreducible, it has a unique stationary distribution π, which solves πΓ = π. If
additionally the Markov process is aperiodic, its state distribution converges to the stationary distribution,
see [Norris, 1997]. Irreducibility and aperiodicity are usually satisfied assumptions in reality.

2. The expression mood is used here as a synonym for the current market trend. If the trend is positive, the
mood of the market is good, and vice versa.
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CHAPTER 3. METHODOLOGY

It is assumed that we are dealing with two time series on two different time scales. For each
observation of the time series on the coarser scale, we have several observations of the times
series on the finer scale, for example monthly observations and corresponding daily observations.
Following the concept of the HMM, we can model both state-dependent time series jointly.
First, we treat the time series on the coarser scale as stemming from an ordinary HMM, which
we refer to as the coarse-scale HMM:

1. At each time point t of the coarse-scale time space {1, . . . , T}, an underlying process (St)t
selects one state from the coarse-scale state space {1, . . . , N}. We call (St)t the hidden
coarse-scale state process.

2. Depending on which state is active at t, one of N distributions f (1), . . . , f (N) realises the
observation Xt. The process (Xt)t is called the observed coarse-scale state-dependent
process.

The processes (St)t and (Xt)t have the same properties as in Section 3.1, namely (St)t is a
first-order Markov process and (Xt)t satisfies the conditional-independence assumption.
Subsequently, we segment the observations of the fine-scale time series into T distinct chunks,

each of which contains all data points that correspond to the t-th coarse-scale time point.
Assuming that we have an amount of T ∗ fine-scale observations on every coarse-scale time
point, we are facing T chunks of T ∗ fine-scale observations each. The hierarchical structure
now evinces itself as we model each of the chunks again by one of N possible fine-scale HMMs.
Each of the fine-scale HMMs has its own transition probability matrix Γ∗(i), initial distribution
δ∗(i), stationary distribution π∗(i) and state-dependent distributions f ∗(i,1), . . . , f ∗(i,N

∗). Which
fine-scale HMM is selected to explain the t-th chunk of fine-scale observations depends on the
hidden coarse-scale state St. The i-th fine-scale HMM explaining the t-th chunk of fine-scale
observations consists of the following two stochastic processes:

1. At each time point t∗ of the fine-scale time space {1, . . . , T ∗}, the process (S∗t,t∗)t∗ selects
one state from the fine-scale state space {1, . . . , N∗}. We call (S∗t,t∗)t∗ the hidden fine-scale
state process.

2. Depending on which state is active at t∗, one of N∗ distributions f ∗(i,1), . . . , f ∗(i,N
∗) re-

alises the observation X∗t,t∗ . The process (X∗t,t∗)t∗ is called the observed fine-scale state-
dependent process.

The state processes (S∗1,t∗)t∗ , . . . , (S∗T,t∗)t∗ and the observation processes (X∗1,t∗)t∗ , . . . , (X∗T,t∗)t∗
satisfy the Markov property and the conditional-independence assumption respectively as well.
Furthermore it is assumed that the fine-scale HMM explaining (X∗t,t∗)t∗ only depends on St.

12



CHAPTER 3. METHODOLOGY

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

. . .

. . . S∗
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Figure 2: Dependence structure of the HHMM

The dependence structure of a HHMM with two hierarchies is visualised in Figure 2. The
notations of the model ingredients are summarised in Table 2. As no additional properties
emerged, the column with the properties is left out.
We now possess a model that allows for joint inference at two (or possibly more) temporal

resolutions. In Chapter 4, we will identify the daily log-returns as the fine-scale resolution. For
the coarse-scale resolution, we include the average over each chunk of fine-scale observations.
The averaging smooths short-term fluctuations and thereby indicates long-term trends. Omit-
ting these somewhat artificial coarse-scale observations is possible, leading to the framework of
[Leos-Barajas et al., 2017]. In the case of financial data however, the truncated approach fails
to conveniently capture short-term and long-term trends jointly without coarse-scale indicators.
For that reason, the approach of [Adam et al., 2019] is the adequate choice. This discussion is
resumed in Chapter 5.

3.3 The Likelihood Function
To fit a HHMM to the DAX, we require a procedure to estimate the model parameters for
given observations. A natural approach is the maximum likelihood method, which suggests
those parameters that yield the highest likelihood for observing the data. This section derives
a formula for the likelihood function of a HHMM, which can be maximized numerically.
Conceptually, a HHMM can be treated as a HMM with two conditionally independent obser-

vations, the coarse-scale observation on the one hand and the corresponding chunk connected

13



CHAPTER 3. METHODOLOGY

Ingredients Notations
coarse-scale time space {1, . . . , T}

state space {1, . . . , N}
hidden state process (St)t
initial probabilities δi = Pr(S1 = i)
initial distribution vector δ = (δi)i
one-step transition probabilities γij = Pr(St+1 = j | St = i)
transition probability matrix Γ = (γij)i,j
stationary distribution vector π = (πi)i
state-dependent distributions f (1), . . . , f (N)

observed state-dependent process (Xt)t
fine-scale time space {1, . . . , T ∗}

state space {1, . . . , N∗}
hidden state processes (S∗t,t∗)t∗ t = 1, . . . , T
initial probabilities δ

∗(i)
k = Pr(S∗(i)1 = k) i = 1, . . . , N

initial distribution vectors δ∗(i) = (δ∗(i)k )k
one-step transition probabilities γ

∗(i)
jk = Pr(S∗(i)t,t∗+1 = k | S∗(i)t,t∗ = j)

transition probability matrices Γ∗(i) = (γ∗(i)jk )j,k
stationary distribution vectors π∗(i) = (π∗(i)k )k
state-dependent distributions f∗(i,1), . . . , f∗(i,N

∗)

observed state-dependent processes (X∗t,t∗)t∗ t = 1, . . . , T

Table 2: Ingredients of the HHMM

to a fine-scale HMM on the other hand. For a start, we derive the likelihood formula for the
fine-scale HMMs. It is assumed that we want to fit the i-th fine-scale HMM with the model
parameters θ∗(i) = (δ∗(i),Γ∗(i), (f ∗(i,k))k) to the t-th chunk (Xt,t∗)t∗ of fine-scale observations. A
formula for the likelihood function can be derived by applying the law of total probability:

LHMM(θ∗(i) | (X∗t,t∗)t∗) =
N∗∑

S∗
t,1,...,S

∗
t,T∗=1

(
T ∗∏
t∗=1

f ∗(i,S
∗
t,t∗ )(X∗t,t∗)

)(
δ
∗(i)
S∗
t,1

T ∗∏
t∗=2

γ
∗(i)
S∗
t,t∗−1S

∗
t,t∗

)
. (3.1)

As (3.1) is of exponential complexity, its computation is too expensive. However, a more
efficient alternative exists. Consider the so-called fine-scale forward probabilities

α
∗(i)
k,t∗ = f ∗(i)(X∗t,1, . . . , X∗t,t∗ , S∗t,t∗ = k),

where t∗ = 1, . . . , T ∗ and k = 1, . . . , N∗. Obviously,

LHMM(θ∗(i) | (X∗t,t∗)t∗) =
N∗∑
k=1

α
∗(i)
k,T ∗ .

14



CHAPTER 3. METHODOLOGY

This representation improves formula (3.1) in terms of computation effort because the forward
probabilities can be calculated in a recursive way of linear complexity:

α
∗(i)
k,1 = δ

∗(i)
k f ∗(i,k)(X∗t,1), (3.2)

α
∗(i)
k,t∗ = f ∗(i,k)(X∗t,t∗)

N∗∑
j=1

γ
∗(i)
jk α

∗(i)
j,t∗−1, t

∗ = 2, . . . , T ∗. (3.3)

The transition from the likelihood function of a HMM to the likelihood function of a HHMM
is straightforward: Consider the so-called coarse-scale forward probabilities

αi,t = f(X1, . . . , Xt, (X∗1,t∗)t∗ , . . . , (X∗t,t∗)t∗ , St = i),

where t = 1, . . . , T and i = 1, . . . , N . The likelihood function of the HHMM results from these
variables as

LHHMM(θ, (θ∗(i))i | (Xt)t, ((X∗t,t∗)t∗)t) =
N∑
i=1

αi,T .

The coarse-scale forward probabilities can again be calculated efficiently:

αi,1 = δiLHMM(θ∗(i) | (X∗1,t∗)t∗)f (i)(X1), (3.4)

αi,t = LHMM(θ∗(i) | (X∗t,t∗)t∗)f (i)(Xt)
N∑
j=1

γjiαj,t−1, t = 2, . . . , T. (3.5)

The proofs for the equations (3.1) to (3.5) are provided in Appendix A.

3.4 Challenges in the Maximization of the Likelihood
Maximization of the likelihood function is numerically feasible using the Newton-Raphson
method. In practise, some technical issues arise which will be discussed in the following.
First, we address the problem of exceeding the computers’ ability limit of processing very

large numbers (numerical overflow) or numbers very close to zero (numerical underflow). We
face this problem because the likelihood function contains products of probabilities3. Maxi-
mizing the logarithm of the likelihood and incorporating constants in a conducive way however
solves the problem. Instead of computing the forward probabilities, we consider a logarithmic

3. In the case of modelling log-return data, numerical overflow is the primary problem. As we will investigate in
Chapter 4, the distributions explaining the log-returns have a relatively small standard deviation. Thereby,
the function values of the densities are large and products of them may exceed the computers’ limit.
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1: procedure logLHMM (θ∗(i) | (X∗t,t∗)t∗)
2: for k = 1, . . . , N∗ do
3: φ

∗(i)
k,1 = log[δ∗(i)k ] + log[f∗(i,k)(X∗t,1)]

4: end for
5: for t∗ = 2, . . . , T ∗ do
6: ct∗−1 = max{φ∗(i)1,t∗−1, . . . , φ

∗(i)
N∗,t∗−1}

7: for k = 1, . . . , N∗ do
8: φ

∗(i)
k,t∗ = log[f∗(i,k)(X∗t,t∗)] + log

[∑N∗

j=1 γ
∗(i)
jk exp[φ∗(i)j,t∗−1 − ct∗−1]

]
+ ct∗−1

9: end for
10: end for
11: cT∗ = max{φ∗(i)1,T∗ , . . . , φ

∗(i)
N∗,T∗}

12: return log
[∑N∗

k=1 exp[φ∗(i)k,T∗ − cT∗ ]
]

+ cT∗

13: end procedure

Algorithm 1: Compute the log-likelihood of a fine-scale HMM

transformation thereof (log-forward probabilities):

φ
∗(i)
k,t∗ = log[α∗(i)k,t∗ ], φi,t = log[αi,t].

The recursive form remains: For t∗ = 2, . . . , T ∗, the fine-scale log-forward probabilities satisfy

φ
∗(i)
k,1 = log[δ∗(i)k ] + log[f ∗(i,k)(X∗t,1)], (3.6)

φ
∗(i)
k,t∗ = log[f ∗(i,k)(X∗t,t∗)] + log

N∗∑
j=1

γ
∗(i)
jk exp[φ∗(i)j,t∗−1 − ct∗−1]

+ ct∗−1, (3.7)

where ct∗−1 = max{φ∗(i)1,t∗−1, . . . , φ
∗(i)
N∗,t∗−1}. As it is easy to verify, the log-likelihood of a fine-scale

HMM results from these variables as

logLHMM(θ∗(i) | (X∗t,t∗)t∗) = log
[
N∗∑
k=1

exp[φ∗(i)k,T ∗ − cT ∗ ]
]

+ cT ∗ ,

where cT ∗ = max{φ∗(i)1,T ∗ , . . . , φ
∗(i)
N∗,T ∗}. See Algorithm 1 for a pseudo-code of the computation.

Similarly, the coarse-scale log-forward probabilities satisfy

φi,1 = log[δi] + logLHMM(θ∗(i) | (X∗1,t∗)t∗) + log[f (i)(X1)], (3.8)

φi,t = logLHMM(θ∗(i) | (X∗t,t∗)t∗) + log[f (i)(Xt)] + log
 N∑
j=1

γji exp[φj,t−1 − ct−1]
+ ct−1, (3.9)
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CHAPTER 3. METHODOLOGY

1: θ = (δ,Γ, (f (i))i) . initialize the coarse-scale parameters
2: for i = 1, . . . , N do
3: θ∗(i) = (δ∗(i),Γ∗(i), (f∗(i,k))k) . initialize the fine-scale parameters
4: end for
5: procedure logLHHMM (θ, (θ∗(i))i | (Xt)t, ((X∗t,t∗)t∗)t)
6: for i = 1, . . . , N do
7: φi,1 = log[δi] + logLHMM (θ∗(i) | (X∗1,t∗)t∗) + log[f (i)(X1)] . logLHMM is defined in Algorithm 1
8: end for
9: for t = 2, . . . , T do
10: ct−1 = max{φ1,t−1, . . . , φN,t−1}
11: for i = 1, . . . , N do
12: φi,t = logLHMM (θ∗(i) | (X∗t,t∗)t∗) + log[f (i)(Xt)] + log

[∑N
j=1 γji exp[φj,t−1 − ct−1]

]
+ ct−1

13: end for
14: end for
15: cT = max{φ1,T , . . . , φN,T }
16: return log

[∑N
i=1 exp[φi,T − cT ]

]
+ cT

17: end procedure

Algorithm 2: Compute the log-likelihood of the HHMM

where ct−1 = max{φ1,t−1, . . . , φN,t−1} and t = 2, . . . , T . The log-likelihood of the HHMM results
from these variables as

logLHHMM(θ, (θ∗(i))i | (Xt)t, ((X∗t,t∗)t∗)t) = log
[
N∑
i=1

exp[φi,T − cT ]
]

+ cT ,

where cT = max{φ1,T , . . . , φN,T}. See Algorithm 2 for the pseudo-code. The proofs for the
equations (3.6) to (3.9) are similar to those of (3.2) to (3.5). For the sake of completeness, they
can be found in the appendix as well.
Secondly, we have to mind that certain model parameters must satisfy constraints, namely

the transition probabilities and potentially parameters of the state-dependent distributions. Us-
ing parameter transformations serves the purpose. To ensure that the entries of the transition
probability matrices fulfill non-negativity and the unity condition, we use a bijective transfor-
mation from the real numbers to the unity interval. Rather than estimating the probabilities
(γij)i,j directly, we estimate unconstrained values (ηij)i 6=j for the non-diagonal entries of Γ and
derive the probabilities using the multinomial logit link

γij = exp[ηij]
1 +∑

k 6=i exp[ηik]
, i 6= j.

The diagonal entries result via the unity condition γii = 1 − ∑j 6=i γij. Noteworthy, not N2

but N(N − 1) parameters have to be estimated for an N × N -transition probability matrix.
Furthermore, if for example a normal distribution is chosen as a state-dependent distribution,
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CHAPTER 3. METHODOLOGY

the estimated standard deviation has to be strictly positive. This can be achieved by applying
an exponential transformation to the unconstrained estimator.
A third source of conflicts lies in the circumstance that the likelihood is maximized with

respect to a relatively large number of parameters. We must be aware that this generally yields
to local maxima apart from the global maximum. Common Newton-Raphson-type optimisation
routines are unable to distinguish local maxima from the global one. To avoid the trap of ending
up at a local maximum, it is recommended to run the maximization routine several times at
random starting points. The number of runs should increase with the number of parameters.

3.5 The Viterbi Algorithm for State Decoding
For a proper model interpretation, it is of interest to decode the hidden states. The term

arg max
S1,...,ST

f(S1, . . . , ST | X1, . . . , XT ) (3.10)

represents the most-likely underlying state sequence (St)t of a HMM given the data (Xt)t.
Transforming the conditional probability reveals that (3.10) is equivalent to the term

arg max
S1,...,ST

f(S1, . . . , ST , X1, . . . , XT ),

which in turn can be computed using the so-called Viterbi algorithm, see [Zucchini et al., 2016,
p. 88 ff.]. This algorithm is based on the variables

ξi,t = max
S1,...,St−1

f(S1, . . . , St−1, St = i,X1, . . . , Xt),

t = 1, . . . , T and i = 1, . . . , N , which can be calculated recursively:

ξi,1 = δif
(i)(X1), (3.11)

ξi,t = max
j

(ξj,t−1γji) f (i)(Xt). (3.12)

See Appendix A for proofs of (3.11) and (3.12). Obtaining the most-likely state sequence (Ŝt)t
is feasible using these variables, starting at the end of the time horizon and going back in time:

ŜT = arg max
i

ξi,T ,

Ŝt = arg max
i

ξi,tγiŜt+1
, t = T − 1, . . . , 1.
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CHAPTER 3. METHODOLOGY

1: θ = (δ,Γ, (f (i))i)
2: procedure Viterbi(θ, (Xt)t)
3: for i = 1, . . . , N do
4: κi,1 = log[δi] + log[f (i)(X1)]
5: end for
6: for t = 2, . . . , T do
7: for i = 1, . . . , N do
8: κi,t = maxj (κj,t−1 + log[γji]) + log[f (i)(Xt)]
9: end for
10: end for
11: ŜT = arg maxi κi,T
12: for t = T − 1, . . . , 1 do
13: Ŝt = arg maxi κi,tγiŜt+1
14: end for
15: return (Ŝt)t
16: end procedure

Algorithm 3: Decode the hidden states (Viterbi algorithm, logarithmic version)

Mind that Ŝt incorporates the transition to the already decoded, subsequent state Ŝt+1. As
for the likelihood function, we need to prevent numerical conflicts (see Section 3.4). Therefore
we apply the logarithm again, see Algorithm 3 where κi,t = log[ξi,t]. Decoding a HHMM is
straightforward by first decoding the coarse-scale process and using this information to decode
the fine-scale process afterwards.

3.6 Pseudo-Residuals
Using so-called pseudo-residuals enables us to check whether a fitted HMM describes the data
well. This cannot be done by standard residual analysis since the observations are explained
by different distributions, depending on the active state. Therefore, all observations have to be
transformed on a common scale in the following way:

If Xt has the invertible distribution function FXt , then Zt = Φ−1(FXt(Xt))

is standard normally distributed, (3.13)

where Φ denotes the cumulative distribution function of the standard normal distribution. The
proof of statement (3.13) is appended. Now we can argue that the data (Xt)t is modelled well
if the pseudo-residuals (Zt)t are approximately standard normally distributed.
To check a HHMM, we first decode the coarse-scale process. Then, we assign each coarse-

scale observation its estimated distribution function and perform the transformation (3.13).
Using the decoded coarse-scale states, we treat the fine-scale observations analogously.
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4 Data Application

In a next step, the HHMM is applied to the DAX. Section 4.1 discusses how we choose from the
class of candidate models. In Section 4.2, we check the chosen model and adjust any noticeable
lack of fit. In Section 4.3, the model results are analysed. Subsequently in Section 4.4, we
discuss the impact of the fine-scale time horizon on the results. In Section 4.5, the Viterbi
algorithm is applied to detect short- and long-term trends. Section 4.6 discusses the accuracy
of the decoding by means of a bootstrapping procedure. Section 4.7 compares the model results
to those we obtain from a basic HMM. In the end, Section 4.8 provides a brief outlook on how
to derive a trading strategy based on the HHMM.

4.1 Model Selection
The HHMM is a relatively flexible model, allowing for any fine-scale time horizon, all kinds of
state-dependent distributions and different numbers of states. Hence, selecting a good or in
some sense the best model is a demanding task.
In the first place, we define two hierarchies. Remember from Chapter 2 that our data encom-

passes an amount of 4817 daily log-returns, which we identify as the fine-scale observations. We
segment them into T distinct chunks, each with the same amount of T ∗ data points. Regarding
a future model interpretation, it would be convenient to segment per month. However, since
each month has a different amount of trading days, this does not lead to equally sized chunks.
Therefore, we choose T ∗ = 30 for now1, which yields an amount of T = b4817/30c = 160
chunks. Notice that we have to drop the 17 latest observations. For the coarse-scale hierarchy,
we compute the average of each chunk and identify these T = 160 average log-returns as the
coarse-scale observations. These data points smooth the fine-scale fluctuations and serve as an
indicator for long-term trends.
Secondly, we discuss the choice of the state-dependent distributions. For now, we select

normal distributions. This choice is motivated by mathematical finance: Stock prices are
often described by a geometric Brownian motion, cf. [Black and Scholes, 1973]. This leads to
log-normally distributed prices and thereby to normally distributed log-prices. Prices however

1. On average, the german stock market has 20 trading days per month, see www.boerse.de/boersenfeiertage
(accessed on June 10, 2019). Hence, T ∗ = 30 represents about six weeks of trading, which seems to be a
reasonable time span at which short-term trends can manifest themselves. Obviously, we later have to verify
that the model results are independent from this arbitrary choice.
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CHAPTER 4. DATA APPLICATION

cannot be assumed to satisfy the conditional-independence assumption. Therefore, we model
the log-returns rather than the log-prices.
Thirdly, we have to select the state space for the hidden state processes. A priori it is not

clear in how many states the behaviour of a financial market can be divided. Therefore, we fit
candidate HHMMs with N = 2, 3, 4 coarse-scale and N∗ = 2, 3, 4 fine-scale states and compute
the Akaike information criterion (AIC), cf. [Akaike, 1974], and the Bayesian information crite-
rion (BIC), cf. [Schwarz, 1978]. These model selection criteria compare the candidate models,
rewarding the goodness of fit (measured by the log-likelihood) while penalising the complexity.
Theoretically, the relative best model corresponds to the lowest AIC or BIC value, respectively.
The values for the candidate models are summarised in Table 3, where p denotes the number
of parameters estimated by the model (which is the measure for the model complexity).2 The
minima are printed in bold. As we observe, AIC and BIC do not agree on the number of states:

N N∗ p logLHHMM AIC BIC
2 2 18 15095,47 -30154,94 -30037,55
2 3 30 15146,60 -30233,20 -30037,55
2 4 46 15174,79 -30257,58 -29957,59
3 2 30 15149,44 -30238,88 -30043,23
3 3 48 15197,19 -30298,38 -29985,34
3 4 72 15228,01 -30312,02 -29842,47
4 2 44 15179,93 -30271,86 -29984,91
4 3 68 15231,61 -30327,22 -29883,75
4 4 100 15274,31 -30348,62 -29696,46

Table 3: AIC and BIC for candidate HHMMs with normal distributions

AIC prefers the maximum number while BIC prefers N = 3 and N∗ = 2. As [Pohle et al., 2017]
points out, we must be aware that especially AIC tends to select too many states in case of
HMMs. In this respect, [Rydén et al., 1998] demonstrates that the HMM has a tendency of
allocating exceptional returns in a separate state. [Pohle et al., 2017] therefore recommends to
not simply rely on these criteria but to carefully inspect the estimated parameters. The model
with N = 3 and N∗ = 3 for example reveals an undesirable feature: For each coarse-scale state,
a fine-scale state exists which seems to be redundant in the sense that its exit probability equals
1. Most likely, these states do only describe outliers. In contrast, all states of the model with
N = 3 and N∗ = 2 are persistent with reasonable transition probabilities. Therefore, we go
with BIC and choose N = 3 coarse-scale and N∗ = 2 fine-scale states. See Appendix B for the
estimated parameters of both mentioned models.

2. Here, p = p(N,N∗) = N(N − 1) +NN∗(N∗ − 1) +N +NN∗ +N +NN∗.
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Figure 3: Pseudo-residuals of the HHMM with normal distributions (coarse-scale layer in first
row, fine-scale layer in second and third row)

4.2 Model Checking
In the preceding section, normal state-dependent distributions and N = 3 coarse-scale and
N∗ = 2 fine-scale states were selected. Now, this particular model choice has to be checked. As
mentioned in Section 3.6, we do so by computing and analysing the models’ pseudo-residuals.
See Figure 3 for different visualisations of the pseudo-residuals generated by the DAX data.
The first row visualises the pseudo-residuals of the coarse-scale observations. The index

plot in the first, the histogram in the second and the normal quantile-quantile plot in the third
column all confirm, that the pseudo-residuals are approximately standard normally distributed.
Furthermore, the top right plot indicates the absence of significant autocorrelation. This is
important to rely on the conditional independence-assumption.
The graphics in the second row correspond to the pseudo-residuals of the fine-scale observa-

tions. Here, the normal quantile-quantile plot clearly indicates a lack of fit: The quantiles do
not form a straight line and hence the fine-scale observations are not well-modelled. However,
only the tails seem to be problematic: The lower quantiles are smaller and the upper quantiles
are greater than expected. In the third row, 5% of the most extreme values (marked in red)
are removed. The remaining pseudo-residuals are roughly standard normally distributed.
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CHAPTER 4. DATA APPLICATION

We conclude that the state-dependent distributions have to be improved in terms of higher
probability mass on the tails. This finding is consistent with the analysis in [Praetz, 1972] and
[Harris and Küçüközmen, 2001]. Therefore, we generalise from the normal distribution N to
the t-distribution T , which possesses an additional kurtosis parameter ν (commonly known as
degrees of freedom). So far, the log-return Xt is modelled by the scaled normal distribution
σStN (0; 1) + µSt =: N (µSt ;σSt). Now, we assume that Xt is stemming from the scaled t-
distribution σStTνSt + µSt =: T (µSt ;σSt ; νSt). All parameters again depend on the current state
St. The new distribution function FXt and density fXt of Xt are

FXt(x) = FTνSt

(
x− µSt
σSt

)
and fXt(x) = σ−1

St fTνSt

(
x− µSt
σSt

)
, (4.1)

respectively. Here, FTνSt denotes the distribution function and fTνSt
the density of the t-

distribution with νSt degrees of freedom. The proof of statement (4.1) is appended.
The class of candidate models is enlarged3 and the selection of the number of states has to

be repeated. AIC and BIC prefer the same models as before, see Table 4. Again, HHMMs

N N∗ p logLHHMM AIC BIC
2 2 24 15103,33 -30158,66 -30002,14
2 3 38 15150,56 -30225,12 -29977,30
2 4 56 15181,32 -30250,64 -29885,43
3 2 39 15171,78 -30265,56 -30011,22
3 3 60 15201,63 -30283,26 -29891,96
3 4 87 15230,88 -30287,76 -29720,28
4 2 56 15189,44 -30266,88 -29901,67
4 3 84 15246,82 -30325,64 -29777,83
4 4 120 15292,63 -30345,26 -29562,67

Table 4: AIC and BIC for candidate HHMMs with t-distributions

with too many states exhibit redundant states, see Appendix B for the estimated parameters
of the model with N = 3 and N∗ = 3. As a consequence, we stick to N = 3 coarse-scale and
N∗ = 2 fine-scale states. The estimated parameters of this model are presented in the following
section. Computing the pseudo-residuals of the new model yields the results visualised in Figure
4. Especially the normal quantile-quantile plot in the second row highlights the improvement:
Now, the empirical quantiles of the fine-scale pseudo-residuals are roughly equal to the ones of
the standard normal distribution.

3. Letting νSt →∞ brings back the normal distribution.
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Figure 4: Pseudo-residuals of the HHMM with t-distributions (coarse-scale layer in first row,
fine-scale layer in second row)

4.3 The Model Results
Inspecting the estimates of the HHMM, we account the coarse-scale layer first. The matrix
Γ of transition probabilities and the stationary distribution vector π identify the hidden state
process. The state-dependent distributions f (1), f (2) and f (3) reveal characteristics of the returns
in the different states.

Γ =


0, 9324 0, 0428 0, 0248
0, 0772 0, 8399 0, 0829
0, 0000 0, 3201 0, 6799


π =

(
0, 4587 0, 4017 0, 1396

)
f (1) = T (6, 25 · 10−4; 1, 28 · 10−3; 26)

f (2) = T (1, 68 · 10−4; 1, 86 · 10−3; 17)

f (3) = T (−20, 33 · 10−4; 5, 03 · 10−3; 28)

State 1 corresponds to the highest expected yield (return of exp[0.000625]−1 ≈ 0.06%), state 3
to the highest expected loss (return of exp[−0.002033]−1 ≈ −0.2%) while state 2 is in-between
(return of exp[0.000168]− 1 ≈ 0.02%). Furthermore, the higher the expected return, the lower
the standard deviation turns out. The kurtosis parameters are relatively large, hence the t-
distributions are very close to the shape of normal distributions. This comes as no surprise
since Figure 3 already approved normal distributions for the coarse-scale observations. The
matrix Γ indicates that all states are quite persistent. Being in state 1, it is roughly twice as
likely to switch to state 2 than to state 3. Being in state 2, the probability to switch to state 1
is nearly the same as switching to state 3. Note that a direct transition from state 3 to state 1
has probability zero. The entries of π can be interpreted as the proportion of time the market
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Figure 5: Estimated state-dependent fine-scale distributions

spends in the different states4. State 1 is leading, closely followed by state 2 while state 3 is
rarer attained.
Within each coarse-scale state, a two-state HMM describes short-term trends. The estimated

fine-scale distributions are visualised in Figure 5.

Γ∗(1) =
0, 9128 0, 0872

0, 0542 0, 9458


π∗(1) =

(
0, 3833 0, 6167

)
f ∗(1,1) = T (16, 48 · 10−4; 4, 52 · 10−3; 3)

f ∗(1,2) = T (0, 87 · 10−4; 9, 53 · 10−3; 4)

Within coarse-scale state 1, fine-scale state 1 represents short-term trends with a relatively high
positive expected return (exp[0.001648]−1 ≈ 0.16%). In fine-scale state 2, the expected return
is about 0. The latter state exhibits twice as much standard deviation as the former one. Both
states are persistent. In 60% of the time, state 2 is active. The kurtosis parameters 3 and 4
indicate heavy tails.

4. This interpretation is motivated by the Ergodic theorem for Markov chains, see [Levin et al., 2017, p. 58]:
The value of the stationary distribution almost-surely equals the proportion of time the process will spend
in the corresponding state in the long run.
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Γ∗(2) =
0, 9887 0, 0113

0, 0037 0, 9963


π∗(2) =

(
0, 2467 0, 7533

)
f ∗(2,1) = T (13, 45 · 10−4; 8, 84 · 10−3; 2)

f ∗(2,2) = T (−1, 18 · 10−4; 13, 58 · 10−3; 3)

In case of coarse-scale state 2, the model estimates fine-scale state 1 with a positive expected
return (exp[0.001345] − 1 ≈ 0.13%) and fine-scale state 2 with a slightly negative expected
return (exp[−0.000118] − 1 ≈ −0.01%). Again, the standard deviation corresponding to the
state of lower expected return is larger. With values of 2 and 3, the kurtosis of both distributions
is relatively high. Both states are persistent, while state 2 is active in 75% of the time.

Γ∗(3) =
0, 9537 0, 0463

0, 0757 0, 9243


π∗(3) =

(
0, 6205 0, 3795

)
f ∗(3,1) = T (−13, 79 · 10−4; 22, 55 · 10−3; 3)

f ∗(3,2) = T (−62, 26 · 10−4; 33, 38 · 10−3; 3)

Finally, for coarse-scale state 3, both fine-scale states exhibit high negative expected returns
(exp[−0.001379] − 1 ≈ −0.14% for fine-scale state 1 and exp[−0.006226] − 1 ≈ −0.62% for
fine-scale state 2) and high standard deviation. Again, kurtosis is high and both states are
quite persistent. The time proportion for state 1 is slightly higher than for state 2.
Summing up, the model provides three indicators to distinguish between the states: Expected

return, volatility and transition behaviour. On the coarser scale, state 1 represents a positive
market mood while coarse-scale state 3 corresponds to periods of falling prices. For each
coarse-scale state, fine-scale state 1 captures short-term upwards trends and fine-scale state 2
short-term downwards trends. Translating the findings to financial terms, we label coarse-scale
state 1 bullish market and coarse-scale state 3 bearish market.5 Furthermore, we name coarse-
scale state 2 state of correction, which is consistent with the expertise of the Hungarian investor
André Kostolany: In [Kostolany, 2015], he argues that a financial market can be overrated or
underrated, which causes periods of adaptation to the current proportion of supply and demand.
The idea of capturing such periods in an own state seems convenient.
Although the labelling simplifies the model interpretation, we should not over-interpret the

states. By no means we designed a universally valid definition of say a bullish market. All
deductions have to be regarded in the context of the model formulation.

5. These terms are very popular in finance, their origin however is unclear. Most likely, they are simply
metaphors: Prices can rise like bulls thrust upwards with their horns or drop like bears swipe downwards
with their paws, see www.boerse.ard.de/boersenwissen (accessed on June 10, 2019).
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4.4 Impact of the Fine-Scale Time Horizon
Up to now, we fixed a fine-scale time horizon of T ∗ = 30 trading days. Remember that this
particular choice was not evidence-based and only served as a remedy because we could not
segment by more convenient periods like months, see Section 4.1. We therefore have to discuss
the impact of T ∗ on the model and check whether different choices lead to similar results.
In our model, T ∗ determines the segmentation of the log-returns into chunks: A small value

leads to many chunks with only few observations each, while a larger value results in less
chunks including more observations. Hence, a change in T ∗ affects the fine-scale HMMs fitted
to each chunk and the averaging for the coarse-scale observations. Obviously, the extend of
the effect depends on the type and amount of data. The effect on our data can be investigated
by varying different values for T ∗ while fixing all other model parameters and repeating the
parameter estimation. Table 5 gives an exemplary overview of the estimates for T ∗ = 25 and
T ∗ = 35. Although we observe a minor discrepancy to the estimates for T ∗ = 30, the main

T ∗ = 25 T ∗ = 35

Γ
0, 8603 0, 1330 0, 0067

0, 0596 0, 8800 0, 0604
0, 0000 0, 2574 0, 7426


0, 8865 0, 1071 0, 0064

0, 0972 0, 8432 0, 0596
0, 0000 0, 3560 0, 6440


f (1) T (7, 05 · 10−4; 1, 54 · 10−3; 27) T (7, 06 · 10−4; 1, 02 · 10−3; 24)
f (2) T (2, 19 · 10−4; 2, 30 · 10−3; 22) T (1, 39 · 10−4; 2, 14 · 10−3; 17)
f (3) T (−30, 41 · 10−4; 4, 93 · 10−3; 30) T (−22, 33 · 10−4; 5, 47 · 10−3; 25)

Γ∗(1)
(

0, 9537 0, 0463
0, 0747 0, 9253

) (
0, 9168 0, 0832
0, 0443 0, 9557

)
f∗(1,1) T (16, 76 · 10−4; 4, 76 · 10−3; 7) T (15, 34 · 10−4; 3, 90 · 10−3; 3)
f∗(1,2) T (−1, 03 · 10−4; 9, 70 · 10−3; 8) T (0, 17 · 10−4; 9, 24 · 10−3; 7)

Γ∗(2)
(

0, 9714 0, 0286
0, 0125 0, 9875

) (
0, 9848 0, 0152
0, 0202 0, 9798

)
f∗(2,1) T (12, 03 · 10−4; 10, 02 · 10−3; 6) T (8, 81 · 10−4; 11, 04 · 10−3; 4)
f∗(2,2) T (−0, 41 · 10−4; 15, 22 · 10−3; 3) T (−0, 73 · 10−4; 16, 54 · 10−3; 4)

Γ∗(3)
(

0, 9743 0, 0257
0, 1083 0, 8917

) (
0, 9581 0, 0419
0, 1515 0, 8485

)
f∗(3,1) T (−26, 77 · 10−4; 12, 00 · 10−3; 9) T (−22, 48 · 10−4; 14, 18 · 10−3; 5)
f∗(3,2) T (−45, 79 · 10−4; 27, 76 · 10−3; 10) T (−37, 99 · 10−4; 28, 19 · 10−3; 7)

Table 5: Estimates for T ∗ = 25 and T ∗ = 35

characteristics like transition behaviour or proportion of expected log-return to volatility do
not change. Only if the fine-scale time horizon is chosen relatively small (T ∗ ≤ 20) or relatively
large (T ∗ ≥ 40), the differences become more significant.
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We conclude that there exists a range of values around T ∗ = 30 that lead to similar model
results. Therefore, the effect of the segmentation is negligible as long as the choice for T ∗ is not
too extreme. Our particular choice T ∗ = 30 equates to about six weeks of trading, which seems
to be a reasonable time span in which short-term trends can manifest themselves. However, we
have to avoid to interpret the estimates down to the last decimal place. Instead, they should
be interpreted in relation to each other across the different states.

4.5 Detection of Bearish and Bullish Markets
The Viterbi algorithm (see Section 3.5) puts us in the position to detect past trends in the
DAX. Figure 6 visualises the decoded states of years 2000 to 2018 in the graphic on top and a
close-up of the financial crisis in 2008 below.
Evidently, the decoding fits to our expectations.6 From 2000 to 2002, the index drops by

more than 3000 points. The model detects coarse-scale state 2. On two occasions, it switches
from fine-scale state 2 to fine-scale state 1, indicating short-term upwards trends. The long-
term downwards trend intensifies in 2003 with an increased volatility in the log-returns, leading
to the detection of a bearish market. At the end of 2003, the market calms down. Until
2007, the index slowly but steadily rises, log-returns are positive on average with low volatility.
Occasionally, the model detects a faster increase of the index, highlighted in light green. The
bullish market comes to an end in 2007, where the model switches to the state of correction.
In the autumn of 2008, the DAX is marked by the global financial crisis, which led to the

bankruptcy of the US investment bank Lehman Brothers on September 15, 2008. The model
switches to coarse-scale state 3. Here, it would be an over-interpretation to emphasise the exact
date of the coarse-scale state transition, since this is influenced by the choice of the fine-scale
time horizon. However, it is noteworthy that the model immediately detects fine-scale state
2 within the bearish market (which represents most lossy periods) and switches to the calmer
fine-scale state 1 as soon as more moderate log-returns occur.
Between 2008 and 2011, the index rises but shows increased volatility. Therefore, the model

remains in the state of correction. At the end of 2011, another bearish market occurs, which
lasts shortly. The market corrects itself quickly and turns into a bullish market, which persists
until 2015. Then, the DAX enters another period of correction. From 2016 until the end of 2018,
the index rises again. In 2017, we observe light green periods in which the DAX gains nearly
4000 points within just a few months. In 2018, the skyrocketing is stopped. As the volatility
remains low, the model retains coarse-scale state 1. The last decoded state on November 29,
2018 is measured as fine-scale state 2 within coarse-scale state 1.

6. The trend changes are accompanied or possibly caused by historical events, see www.faz.net/-gv6-9brsq
(accessed on June 20, 2019).
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Figure 6: Decoded states and a close-up of the financial crisis 2008
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Figure 7: Bootstrapping of the Viterbi algorithm

4.6 Accuracy of the State Decoding
Analysing the accuracy of the state decoding is an essential part of the model interpretation,
which can be carried out by means of a bootstrapping procedure. Based on the model parame-
ters, we repeatedly simulate log-returns. For each simulation, we memorise the underlying state
sequence (the true states). Then, the simulations are decoded by using the Viterbi algorithm.
The decoded states can hence be compared to the true states. This comparison eventually
reveals potential issues in the detection of short-term and long-term trends. Figure 7 shows a
sample path7 in blue and for comparison purposes the DAX in grey.
On the coarse scale, state 1 and state 3 are distinguished very reliably. Most frequently,

the Viterbi algorithm fails in separating state 1 from state 2: In about 30% of the cases,
coarse-scale state 1 instead of the true state 2 is decoded and in about 20% of the cases, the
reversed issue occurs. Taking this into consideration, the time span 2009 to 2012 has to be
interpreted cautiously: Here, the state of correction is detected, see Figure 6, probably due to
an increased standard deviation. However, we are now aware that a bullish market for this
period is conceivable as well.
On the fine scale, state transitions are best detected within coarse-scale state 1. More fre-

quently, the Viterbi algorithm fails to detect simulated short-term trends within coarse-scale
state 2 and coarse-scale state 3. It often misleadingly decodes persistence in the fine-scale state
processes. Most likely, this is due to the fact that the shapes of the estimated state-dependent
distributions are relatively close to each other, see Figure 5.
Summing up, the Viterbi algorithm performs reasonably well decoding the model states.

However, this analysis again sensitises to the danger of over-interpretation.

7. The sample path is generated by back-transforming the log-returns to index values, see Chapter 2.
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Figure 8: Estimated state-dependent distributions (left), decoded states (top-right) and pseudo-
residuals (bottom-right, histogram and quantile-quantile plot) of the HMM

N p logLHMM AIC BIC
2 8 14212.34 -28408.68 -28356.87
3 15 14334.49 -28638.98 -28541.83
4 24 14364.23 -28680.46 -28525.03
5 35 14392.64 -28715.28 -28488.61
6 48 14395.91 -28695.82 -28384.95
7 63 14410.11 -28694.22 -28286.21
8 80 14426.37 -28692.74 -28174.63

Table 6: AIC and BIC for candidate HMMs

4.7 Comparison to HMM Results
To spot the improvements in modelling financial data with the HHMM, we fit the basic HMM
to the log-return data as well. As for the HHMM, state-dependent t-distributions are the
adequate choice. Again, selecting the number of model states N is not straightforward. AIC
prefers five and BIC three states respectively, see Table 6. As seen in [Nguyen, 2018] for the
S&P 500, four states are selected here for the DAX, justified by the following arguments: First,
three states seem to oversimplify the situation for a financial market. Secondly, in the case
of five states, a redundant state with exit probability 1 occurs, see Appendix B. Thirdly, four
states is a compromise between the model selection criteria elaborated on above.
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The estimated parameters of the selected HMM with four states are appended. The model
results are visualised in Figure 8. From the quantile-quantile plot we notice that the pseudo-
residuals indicate a reasonable model fit. However, the state decoding by the Viterbi algorithm
indicates that the difference between short- and long-term trends is not captured. This be-
comes clear as we back-transform the log-returns to index values, compare to Figure 6. Fur-
thermore, the AIC and BIC values have significantly decreased in comparison to the values for
the HHMMs.

4.8 Thoughts on a HHMM-Based Trading Strategy
The main motivation for modelling financial data lies in making predictions on the upcoming
market behaviour and deriving investment guidance. This section gives a brief outlook on
how to profitably exploit the advantage of the HHMM to distinguish between short-term and
long-term trends regarding a trading strategy.
In general, trading strategies have to be adapted to subjective factors like risk-proclivity or

pursued investment horizons. For the sake of convenience, the following case is considered: A
risk-neutral stock trader wants to invest in the long term. Reasonably, the trader tries to earn
money by buying shares at the beginning of a bullish market and selling them at the beginning
of a bearish market. The trader aims to solely react to long-term trend changes and wants to
ignore short-term price fluctuations as with every purchase and sale of shares fees are due. The
HHMM is well suited to identify this difference.
Remember that our model distinguishes market states by three characteristics (expected

return, volatility and transition probabilities). Assuming that these characteristics do not
significantly change after the model calibration, it can be applied to classify upcoming index
values into the model states. This classification in combination with financial knowledge on
how to react to trend changes then leads to guidance when to buy, sell or hold shares.8

The classification can be carried out iteratively, see Algorithm 4 for a summary of the follow-
ing procedure. Assume that the market is in coarse-scale state St−1 and fine-scale state S∗t−1 at
time point t−1.9 At time point t, we observe the log-return X∗t and want to know whether this
observation indicates a change in the long-term trend or is merely stemming from short-term
price fluctuations. For that purpose, take the average X̄ over the T ∗ latest observations (in-

8. Such knowledge can be derived for example from [Kostolany, 2015]. The author states that financial markets
exhibit six stages that repeat cyclically. For each stage, Kostolany gives recommendations for the stock
exchange. His approach is called Ei des Kostolany.

9. The initial point in our case could be fine-scale state 2 within coarse-scale state 1 at the end of the model
calibration, see Section 4.5.
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1: θ = (δ,Γ, (f (i))i)
2: for i = 1, . . . , N do
3: θ∗(i) = (δ∗(i),Γ∗(i), (f∗(i,k))k)
4: end for
5: procedure Classify(X∗t | St−1, S

∗
t−1, ((X∗t,t∗)t∗)t, θ, (θ∗(i))i, T ∗)

6: X̄ = 1/T ∗
∑T∗−1
s=0 X∗t−s . compute the average over the fine-scale time horizon

7: Λ = arg maxi γSt−1if
(i)(X̄)

8: if Λ = St−1 then . assume no coarse-scale state transition
9: St = St−1

10: S∗t = arg maxj γ
∗(St)
S∗
t−1j

f∗(St,j)(X∗t )
11: else if Λ 6= St−1 then . check upon a potential coarse-scale state transition
12: pCS = γSt−1Λf

(Λ)(X̄)
13: pFS = maxj 6=S∗

t−1
γ
∗(St−1)
S∗
t−1j

f∗(St−1,j)(X∗t )
14: if pCS > pFS then . assume coarse-scale state transition
15: St = Λ
16: S∗t = arg maxj δ

∗(St)
j f∗(St,j)(X∗t )

17: else if pCS ≤ pFS then . assume fine-scale state transition
18: St = St−1

19: S∗t = arg maxj 6=S∗
t−1

γ
∗(St)
S∗
t−1j

f∗(St,j)(X∗t )
20: end if
21: end if
22: return (St, S∗t )
23: end procedure

Algorithm 4: Classify the upcoming log-returns

cluding X∗t ) and identify which coarse-scale state most likely is accountable for X̄ by minding
the transition from the subsequent state St−1. More formally, compute

Λ = arg max
i

γSt−1if
(i)(X̄), where X̄ = 1/T ∗

T ∗−1∑
s=0

X∗t−s.

If Λ equals St−1, we assume that no coarse-scale state transition occurred. A possible fine-scale
state transition can be identified by means of

S∗t = arg max
j

γ
∗(St)
S∗
t−1j

f ∗(St,j)(X∗t ).

However, if Λ differs from St−1, we might face a change in the long-term trend. In such a
situation, we can rely on the maximum likelihood-principle: Compare the probabilities

pCS = γSt−1Λf
(Λ)(X̄) and pFS = max

j 6=S∗
t−1
γ
∗(St−1)
S∗
t−1j

f ∗(St−1,j)(X∗t )

for a coarse-scale and a fine-scale state transition and decide for the event that is more likely.
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5 Discussion

The aim of the present thesis was to elaborate the hierarchical hidden Markov model as an im-
proved framework for modelling financial data. The idea was motivated by [Adam et al., 2019],
whose approach convinced for animal movement inference. Both fields share the characteristic
of patterns occurring on different temporal resolutions. As pointed out in the introduction,
the basic hidden Markov model has been used for modelling stock market indices before. How-
ever, the models’ incapability of capturing trends on different time scales is a significant deficit:
Short-term price fluctuations can easily be misinterpreted as a change in the long-term trend
which leads to a distorted picture of the underlying mechanisms as a consequence. By adding
a hierarchical structure, we paved the way to capture long-term and short-term trends jointly.
A priori, it was expected that this extension leads to an improved inference of financial data
which yields a better understanding of market behaviour.
We started by presenting the model formulation, a parameter estimation procedure based on

the maximum likelihood method, the Viterbi algorithm for state decoding and the concept of
pseudo-residuals as a tool for model checking. Subsequently, the methodology was exemplary
applied to closing prices of the Deutscher Aktienindex. The thesis covered the chronological
progression from the model selection to its interpretation. Obstacles in the choice of the state-
dependent distributions and the number of model states were highlighted. The inherent impact
of the fine-scale time horizon on the model results was discussed. Subsequently, applying the
Viterbi algorithm, we were able to detect so-called bullish and bearish markets. We noticed
that the decoding of the states fits well to historical events and a priori expectations. Because of
the repeated use of the Viterbi algorithm throughout the thesis, we analysed its accuracy in the
field of financial data by a bootstrapping procedure. We concluded that the algorithm performs
reasonably well in most scenarios and highlighted problem cases. To spot the improvement
of the hierarchical model extension, we also tested the non-hierarchical model. In terms of
model interpretation and trend capturing on different resolutions, the HMM results were clearly
inferior to the ones of the HHMM. The last section provided a brief outlook on a HHMM-based
trading strategy, which profitably exploits the advantage that short-term and long-term trends
can be distinguished.
Besides the success of capturing financial trends on two different resolutions, limitations of the

approach emerged and some questions remained open. In the first place, it is highly debatable
whether the independence assumptions of the model are fulfilled. Remember that we assumed
conditional independence among the observations and that the fine-scale HMMs are indepen-
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dent from the coarse-scale observations. These assumptions were made to achieve a likelihood
function in simple product form. While the former assumption is justifiable in the case of re-
turns, the latter one is critical because we used averages over the fine-scale data as coarse-scale
observations. Choosing other indicators like trading volume would be no remedy as depen-
dence across the layers is still conceivable. However, we can argue that the average log-returns
indicate a change in the long-term trend which depends only on the current coarse-scale state
and not on short-term fluctuations. Hence, independence may be practically plausible. As
mentioned at the end of Section 3.2, it is possible to omit the coarse-scale observation layer
which would prevent the dependence issue. Furthermore, data would enter the model only once
which generally has to be preferred. However, it turned out that the truncated model fails to
conveniently capture trends. This stands in contrast to [Leos-Barajas et al., 2017], where the
approach was suitable for animal movement modelling. In the case of financial data however,
coarse-scale indicators seem to be mandatory.
Furthermore, we should question the classification of financial market behaviour into a finite

number of states. For animal movement data, discrete states that explain for example resting,
foraging or travelling are fairly natural. The prospect of having similar proxies for financial
data is desirable. However, classifying discretely here might in fact be unrealistic. Allowing
gradual changes might bring us closer to reality. The HMM framework provides a solution to
this scenario in terms of the state-space model, which possesses a continuous state space. Ideas
like having discrete states on the coarse scale and the state-space model with infinite states
on the fine scale or vice versa immediately come to mind. It would be interesting to find out
whether such a model formulation would improve the results further, though we should expect
the interpretation to become much harder. In contrast, discrete states are easier to interpret,
despite being prone to over-interpretation.
In addition to state-space models, further extensions of the present work are conceivable. As

stated in Section 3.2, any desired number of model hierarchies is theoretically feasible. Perhaps
a third hierarchy capturing medium-term trends brings us closer to a complete description of
financial market behaviour. Mind however that the model then becomes more instable and
the numerical processing effort will increase rapidly. Remember that our final model with two
hierarchies already possessed thirty-nine parameters. Choosing more layers or states would
require an improvement to our approach of repeated numerical search for global likelihood
maxima based on random starting points.
Another idea is to apply the model to stock market indices of other countries. Apparently,

they share some patters, see the graphic underneath the abstract. Trend changes in one index
might indicate a trend change in others due to the given connectivity of todays financial markets.
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Such information can in turn enter the field of trading strategies, which this thesis touched only
briefly. Further research and testing is required on how the outlined ideas perform.
In summary, the HHMM has proven to be very suitable for investigation of financial market

behaviour. It helps to understand how trends alternate and thereby increases the chance of
making profitable investment decisions. Such guidance is valuable since following the main-
stream will not pay of a the stock market. Instead, independent thinking is demanded, which
this model can support. Last but not least, the underlying idea of the work is consistent with
a famous principle of André Kostolany (loosely translated):
«Think long-term. Prices rise or fall over months and years. There is no need to let yourself

be driven crazy by short-term fluctuations.»
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Appendix A Proofs
Proof of equation (3.1):

LHMM (θ∗(i) | (X∗t,t∗)t∗) = f∗(i)((X∗t,t∗)t∗)

=
N∗∑

S∗
t,1,...,S

∗
t,T∗ =1

f∗(i)((X∗t,t∗)t∗ | (S∗t,t∗)t∗)f∗(i)((S∗t,t∗)t∗) (law of total probabilty)

=
N∗∑

S∗
t,1,...,S

∗
t,T∗ =1

(
T∗∏
t∗=1

f∗(i)(X∗t,t∗ | S∗t,t∗)
)
f∗(i)((S∗t,t∗)t∗) (conditional independence)

=
N∗∑

S∗
t,1,...,S

∗
t,T∗ =1

(
T∗∏
t∗=1

f∗(i)(X∗t,t∗ | S∗t,t∗)
)(

f∗(i)(S∗t,1)
T∗∏
t∗=2

f∗(i)(S∗t,t∗ | S∗t,t∗−1)
)

(law of total probability, Markov property)

=
N∗∑

S∗
t,1,...,S

∗
t,T∗ =1

(
T∗∏
t∗=1

f∗(i,S
∗
t,t∗ )(X∗t,t∗)

)(
δ
∗(i)
S∗
t,1

T∗∏
t∗=2

γ
∗(i)
S∗
t,t∗−1S

∗
t,t∗

)
(notations)

Proof of equation (3.2):

α
∗(i)
k,1 = f∗(i)(X∗t,1, S∗t,1 = k)

= f∗(i)(S∗t,1 = k)f∗(i)(X∗t,1 | S∗t,1 = k) (conditional probability)

= δ
∗(i)
k f∗(i,k)(X∗t,1) (notations)

Proof of equation (3.3):

α
∗(i)
k,t∗ = f∗(i)(X∗t,1, . . . , X∗t,t∗ , S∗t,t∗ = k)

= f∗(i)(X∗t,t∗ | X∗t,1, . . . , X∗t,t∗−1, S
∗
t,t∗ = k)f∗(i)(X∗t,1, . . . , X∗t,t∗−1, S

∗
t,t∗ = k) (conditional probability)

= f∗(i)(X∗t,t∗ | S∗t,t∗ = k)
N∗∑
j=1

f∗(i)(X∗t,1, . . . , X∗t,t∗−1, S
∗
t,t∗ = k | S∗t,t∗−1 = j)f∗(i)(S∗t,t∗−1 = j)

(conditional independence, law of total probability)

= f∗(i)(X∗t,t∗ | S∗t,t∗ = k)
N∗∑
j=1

f∗(i)(S∗t,t∗ = k | S∗t,t∗−1 = j)f∗(i)(X∗t,1, . . . , X∗t,t∗−1, S
∗
t,t∗−1 = j)

(conditional independence, conditional probability)

= f∗(i,k)(X∗t,t∗)
N∗∑
j=1

γ
∗(i)
jk α

∗(i)
j,t∗−1 (notations)
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Proof of equation (3.4):

αi,1 = f(X1, (X∗1,t∗)t∗ , St = i)

= f(St = i)f(X1, (X∗1,t∗)t∗ | St = i) (conditional probability)

= f(St = i)f((X∗1,t∗)t∗ | St = i)f(X1 | St = i) (conditional independence)

= δiLHMM (θ∗(i) | (X∗1,t∗)t∗)f (i)(X1) (notations)

Proof of equation (3.5):

αi,t = f(X1, . . . , Xt, (X∗1,t∗)t∗ , . . . , (X∗t,t∗)t∗ , St = i)

= f(Xt, (X∗t,t∗)t∗ | X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St = i)

· f(X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St = i) (conditional probability)

= f(Xt, (X∗t,t∗)t∗ | St = i)

·
N∑
j=1

f(X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St = i | St−1 = j)f(St−1 = j)

(conditional independence, law of total probability)

= f((X∗t,t∗)t∗ | St = i)f(Xt | St = i)

·
N∑
j=1

f(St = i | St−1 = j)f(X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St−1 = j)

(conditional independence, conditional probability)

= LHMM (θ∗(i) | (X∗t,t∗)t∗)f (i)(Xt)
N∑
j=1

γjiαj,t−1 (notations)

Proof of equation (3.6):

φ
∗(i)
k,1 = log[f∗(i)(X∗t,1, S∗t,1 = k)]

= log[f∗(i)(S∗t,1 = k)f∗(i)(X∗t,1 | S∗t,1 = k)] (conditional probability)

= log[δ∗(i)k ] + log[f∗(i,k)(X∗t,1)] (logarithmic identity, notations)

Proof of equation (3.7):

φ
∗(i)
k,t∗ = log[f∗(i)(X∗t,1, . . . , X∗t,t∗ , S∗t,t∗ = k)]

= log[f∗(i)(X∗t,t∗ | X∗t,1, . . . , X∗t,t∗−1, S
∗
t,t∗ = k)f∗(i)(X∗t,1, . . . , X∗t,t∗−1, S

∗
t,t∗ = k)] (conditional probability)

= log[f∗(i)(X∗t,t∗ | S∗t,t∗ = k)
N∗∑
j=1

f∗(i)(X∗t,1, . . . , X∗t,t∗−1, S
∗
t,t∗ = k | S∗t,t∗−1 = j)f∗(i)(S∗t,t∗−1 = j)]

(conditional independence, law of total probability)
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= log[f∗(i)(X∗t,t∗ | S∗t,t∗ = k)
N∗∑
j=1

f∗(i)(S∗t,t∗ = k | S∗t,t∗−1 = j)f∗(i)(X∗t,1, . . . , X∗t,t∗−1, S
∗
t,t∗−1 = j)]

(conditional independence, conditional probability)

= log[f∗(i,k)(X∗t,t∗)] + log

N∗∑
j=1

γ
∗(i)
jk exp[φ∗(i)j,t∗−1 − ct∗−1]

+ ct∗−1

(logarithmic and exponential identities, notations)

Proof of equation (3.8):

φi,1 = log[f(X1, (X∗1,t∗)t∗ , St = i)]

= log[f(St = i)f(X1, (X∗1,t∗)t∗ | St = i)] (conditional probability)

= log[f(St = i)f((X∗1,t∗)t∗ | St = i)f(X1 | St = i)] (conditional independence)

= log[δi] + log[LHMM (θ∗(i) | (X∗1,t∗)t∗)] + log[f (i)(X1)] (logarithmic identity, notations)

Proof of equation (3.9):

φi,t = log[f(X1, . . . , Xt, (X∗1,t∗)t∗ , . . . , (X∗t,t∗)t∗ , St = i)]

= log[f(Xt, (X∗t,t∗)t∗ | X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St = i)

· f(X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St = i)] (conditional probability)

= log[f(Xt, (X∗t,t∗)t∗ | St = i)

·
N∑
j=1

f(X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St = i | St−1 = j)f(St−1 = j)]

(conditional independence, law of total probability)

= log[f((X∗t,t∗)t∗ | St = i)f(Xt | St = i)

·
N∑
j=1

f(St = i | St−1 = j)f(X1, . . . , Xt−1, (X∗1,t∗)t∗ , . . . , (X∗t−1,t∗)t∗ , St−1 = j)]

(conditional independence, conditional probability)

= logLHMM (θ∗(i) | (X∗t,t∗)t∗) + log[f (i)(Xt)] + log

 N∑
j=1

γji exp[φj,t−1 − ct−1]

+ ct−1

(logarithmic and exponential identities, notations)

Proof of equation (3.11):

ξi,1 = f(S1 = 1, X1)

= f(S1 = i)f(X1 | S1 = i) (conditional probability)

= δif
(i)(X1) (notations)
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Proof of equation (3.12):

ξi,t = max
S1,...,St−1

f(S1, . . . , St−1, St = i,X1, . . . , Xt)

= max
S1,...,St−1

f(Xt | S1, . . . , St−1, St = i,X1, . . . , Xt−1)f(S1, . . . , St−1, St = i,X1, . . . , Xt−1)

(conditional probability)

= max
S1,...,St−1

f(Xt | St = i)f(St = i | S1, . . . , St−1, X1, . . . , Xt−1)f(S1, . . . , St−1, X1, . . . , Xt−1)

(conditional independence, conditional probability)

= max
S1,...,St−1

f(Xt | St = i)f(St = i | St−1)f(S1, . . . , St−1, X1, . . . , Xt−1) (Markov property)

= max
S1,...,St−2,j

f(Xt | St = i)f(St = i | St−1 = j)f(S1, . . . , St−2, St−1 = j,X1, . . . , Xt−1)

= max
j

(ξj,t−1γji) f (i)(Xt) (notations)

Proof of statement (3.13): Let Ut = FXt(Xt) and assume that FXt is invertible. Then:

FUt(u) = Pr(Ut ≤ u) = Pr(FXt(Xt) ≤ u) = Pr(Xt ≤ F−1
Xt

(u)) = FXt(F−1
Xt

(u)) = u,

which implies that Ut = FXt(Xt) ∼ U [0, 1]. Let now Zt = Φ−1(Ut). Then:

FZt(z) = Pr(Zt ≤ z) = Pr(Φ−1(Ut) ≤ z) = Pr(Ut ≤ Φ(z)) = FUt(Φ(z)) = Φ(z),

which implies that Zt = Φ−1(Ut) = Φ−1(FXt(Xt)) ∼ N (0, 1).

Proof of statement (4.1): If Xt ∼ σStTνSt + µSt , then:

FXt(x) = Pr(Xt ≤ x) = Pr
(
Xt − µSt
σSt

≤ x− µSt
σSt

)
= FTνSt

(
x− µSt
σSt

)
,

fXt(x) = d
dxFXt(x) = d

dxFTνSt

(
x− µSt
σSt

)
= σ−1

St
fTνSt

(
x− µSt
σSt

)
.
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Appendix B Parameter Estimates
Estimated parameters of the HHMM with T ∗ = 30, N = 3, N∗ = 2 and normal distributions1:

Γ =

0, 9326 0, 0376 0, 0298
0, 0764 0, 8418 0, 0818
0, 0000 0, 3310 0, 6690


Γ∗(1) =

(
0, 9832 0, 0168
0, 0070 0, 9930

)

Γ∗(2) =
(

0, 8424 0, 1576
0, 0771 0, 9229

)

Γ∗(3) =
(

0, 9817 0, 0183
0, 0143 0, 9857

)
π =

(
0, 4566 0, 4028 0, 1406

)
π∗(1) =

(
0, 2941 0, 7059

)
π∗(2) =

(
0, 3285 0, 6715

)
π∗(3) =

(
0, 4387 0, 5613

)

f (1) = N (6, 08 · 10−4; 1, 31 · 10−3)

f (2) = N (1, 85 · 10−4; 1, 93 · 10−3)

f (3) = N (−21, 28 · 10−4; 5, 17 · 10−3)

f∗(1,1) = N (17, 46 · 10−4; 4, 45 · 10−3)

f∗(1,2) = N (0, 43 · 10−4; 10, 16 · 10−3)

f∗(2,1) = N (12, 02 · 10−4; 9, 59 · 10−3)

f∗(2,2) = N (−2, 30 · 10−4; 15, 08 · 10−3)

f∗(3,1) = N (−14, 50 · 10−4; 24, 62 · 10−3)

f∗(3,2) = N (−57, 16 · 10−4; 35, 78 · 10−3)

Estimated parameters of the HHMM with T ∗ = 30, N = 3, N∗ = 3 and normal distributions:

Γ =

0, 8991 0, 0609 0, 0400
0, 1345 0, 7331 0, 1324
0, 0766 0, 2851 0, 6383



Γ∗(1) =

0, 0000 1, 0000 0, 0000
0, 1017 0, 7320 0, 1663
0, 1073 0, 0000 0, 8927



Γ∗(2) =

0, 0000 1, 0000 0, 0000
0, 1895 0, 6367 0, 1738
0, 2102 0, 7898 0, 0000



Γ∗(3) =

0, 0000 0, 8375 0, 1625
0, 0000 0, 9823 0, 0177
0, 0372 0, 0000 0, 9628


π =

(
0, 5298 0, 3013 0, 1689

)
π∗(1) =

(
0, 0951 0, 3549 0, 5500

)
π∗(2) =

(
0, 1615 0, 7144 0, 1241

)
π∗(3) =

(
0, 0133 0, 6292 0, 3575

)

f (1) = N (5, 70 · 10−4; 1, 36 · 10−3)

f (2) = N (1, 85 · 10−4; 1, 95 · 10−3)

f (3) = N (−17, 97 · 10−4; 4, 83 · 10−3)

f∗(1,1) = N (108, 60 · 10−4; 5, 60 · 10−3)

f∗(1,2) = N (8, 37 · 10−4; 4, 11 · 10−3)

f∗(1,3) = N (−14, 10 · 10−4; 10, 34 · 10−3)

f∗(2,1) = N (169, 94 · 10−4; 9, 81 · 10−3)

f∗(2,2) = N (0, 06 · 10−4; 9, 99 · 10−3)

f∗(2,3) = N (−206, 21 · 10−4; 8, 87 · 10−3)

f∗(3,1) = N (587, 74 · 10−4; 9, 07 · 10−3)

f∗(3,2) = N (1, 91 · 10−4; 19, 85 · 10−3)

f∗(3,3) = N (−74, 76 · 10−4; 29, 93 · 10−3)

1. Remember that N (µ;σ) is the notation of the normal distribution with mean µ and standard deviation σ.
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APPENDIX B. PARAMETER ESTIMATES

Estimated parameters of the HHMM with T ∗ = 30, N = 3, N∗ = 3 and t-distributions2:

Γ =

0, 8773 0, 1132 0, 0095
0, 1872 0, 7592 0, 0536
0, 0025 0, 2568 0, 7407



Γ∗(1) =

0, 0157 0, 5848 0, 3995
0, 0000 0, 8529 0, 1471
0, 1939 0, 0008 0, 8053



Γ∗(2) =

0, 8499 0, 1335 0, 0166
0, 0086 0, 9780 0, 0134
0, 0133 0, 8894 0, 0973



Γ∗(2) =

0, 0973 0, 8894 0, 0133
0, 0134 0, 9780 0, 0086
0, 0166 0, 1335 0, 8499



Γ∗(3) =

0, 0435 0, 9515 0, 0050
0, 0006 0, 9865 0, 0129
0, 6923 0, 0091 0, 2986


π =

(
0, 5480 0, 3579 0, 0941

)
π∗(1) =

(
0, 0992 0, 3972 0, 5036

)
π∗(2) =

(
0, 0148 0, 9306 0, 0546

)
π∗(3) =

(
0, 0136 0, 9685 0, 0179

)

f (1) = T (6, 13 · 10−4; 1, 33 · 10−3; 29)

f (2) = T (−0, 66 · 10−4; 2, 10 · 10−3; 24)

f (3) = T (−20, 14 · 10−4; 5, 36 · 10−3; 26)

f∗(1,1) = T (129, 48 · 10−4; 5, 00 · 10−3; 10)

f∗(1,2) = T (16, 35 · 10−4; 4, 52 · 10−3; 11)

f∗(1,3) = T (−26, 48 · 10−4; 8, 65 · 10−3; 11)

f∗(2,1) = T (17, 50 · 10−4; 0, 23 · 10−3; 2)

f∗(2,2) = T (1, 93 · 10−4; 13, 62 · 10−3; 7)

f∗(2,3) = T (−40, 65 · 10−4; 21, 09 · 10−3; 8)

f∗(3,1) = T (334, 34 · 10−4; 0, 85 · 10−3; 2)

f∗(3,2) = T (−17, 53 · 10−4; 24, 76 · 10−3; 3)

f∗(3,3) = T (−523, 16 · 10−4; 5, 53 · 10−3; 7)

Estimated parameters of the HMM with N = 4 and t-distributions:

Γ =


0, 9555 0, 0445 0, 0000 0, 0000
0, 0291 0, 9603 0, 0106 0, 0000
0, 0000 0, 0112 0, 9833 0, 0055
0, 0000 0, 0000 0, 0164 0, 9836


π =

(
0, 2241 0, 3427 0, 3244 0, 1088

)

f (1) = T (14, 92 · 10−4; 5, 50 · 10−3; 10)

f (2) = T (1, 80 · 10−4; 9, 72 · 10−3; 14)

f (3) = T (−0, 49 · 10−4; 14, 19 · 10−3; 15)

f (4) = T (−27, 85 · 10−4; 26, 87 · 10−3; 13)

Estimated parameters of the HMM with N = 5 and t-distributions:

Γ =


0, 0000 0, 5169 0, 0000 0, 0000 0, 4831
0, 0000 0, 8923 0, 0000 0, 0000 0, 1077
0, 0101 0, 0000 0, 9847 0, 0052 0, 0000
0, 0000 0, 0000 0, 0162 0, 9838 0, 0000
0, 1982 0, 0000 0, 0145 0, 0000 0, 7873


π =

(
0, 0515 0, 2472 0, 3476 0, 1116 0, 2421

)

f (1) = T (129, 68 · 10−4; 5, 25 · 10−3; 14)

f (2) = T (15, 99 · 10−4; 4, 76 · 10−3; 7)

f (3) = T (−0.38 · 10−4; 13, 97 · 10−3; 16)

f (4) = T (−26.90 · 10−4; 25, 77 · 10−3; 8)

f (5) = T (−27.81 · 10−4; 8, 62 · 10−3; 11)

2. Remember that T (µ;σ; ν) is the notation of the scaled t-distribution σTν + µ with ν degrees of freedom.
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