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Summary

• Marketing, transportation, psychology, and other fields use probit models to
analyse discrete choice behavior . We propose a latent class model
extension that allows for the classification of decider preferences
without requiring the explicit specification of the number of classes.

• The model is estimated in a Bayesian framework , and the class number

is determined by a Dirichlet process .

• We apply the proposed method in the context of chess, where players are
classified in three classes according to their risk-taking propensity .

Bayesian probit models

Probit models are commonly rooted in the random utility framework .
They assume that deciders assign utility values to discrete choice alternatives and
seek to maximize them. The utilities are modeled as a linear function of observable
and unobservable factors, where the latter are assumed to follow a multivariate
normal distribution. Specifically, decider n’s choice ynt ∈ {1, . . . , J} at choice
occasion t is explained through a matrix Xnt of choice characteristics as

ynt = argmaxUnt, Unt = Xntβ + εnt, εnt ∼ N(0,Σ). (1)

We assume that (1) has been normalized for level and scale. A Bayesian analysis
requires the computation of the posterior density

Pr(β,Σ | y,X) ∝ Pr(β,Σ)× L(β,Σ | y,X). (2)

For the prior Pr(β,Σ), it is convenient to employ independent conjugate distribu-
tions, i.e. the normal for β and the inverse Wishart for Σ. The probit likelihood
is the product of independent multinomial distributions

L(β,Σ | y,X) =
∏

Pr(ynt = argmaxUnt). (3)

Evaluating (3) requires costly computations of the normal CDF due to the error
specification in (1). Instead, we augment (Unt)n,t as parameters [1], following
truncated normals, which yields a Gibbs sampling scheme to approximate (2).

We provide an implementation of the

Gibbs sampler in R via the {RprobitB}

package [5].

Preference classification

To incorporate preference heterogeneity , we model random variation in
the coefficient vector β across deciders using a Gaussian mixture with C classes:

βn ∼
∑

scN(bc,Ωc), (4)

where the weights (sc)c are Dirichlet distributed with concentration δ > 0. This

• provides an arbitrarily good approximation of the true underlying mixing
distribution [4],

• and enables the classification of deciders with common expected preferences
bc and covariances Ωc (our focus here).

To avoid the need to a priori select the number C of classes included, we im-
pose a Dirichlet process prior DP (G, δ) on the distribution (4), where
(assuming conjugate priors for b and Ω) the base distribution G is formed as
the product of a normal and an inverse Wishart distribution [3]. The Dirichlet
process integrates into the Gibbs sampler by iteratively updating (bc)c and (Ωc)c
using their posterior predictive distributions. The decider-specific assignments
z = (zn)n to either existing or new classes are updated via

Pr(zn = c | z−n, δ) = (N − 1 + δ)−1 ·
{
|{z−n = c}| c = 1, . . . , C,

δ c = C + 1,
(5)

where z−n denotes z excluding the n-th element, andN is the number of deciders.

The impact of the concentration prior δ on (5) diminishes as N in-
creases, resulting in stable inference, as verified in our simulation:

δ = 0.1 δ = 0.5 δ = 1 δ = 2 δ = 10

N = 100 1 (0.33) 2 (0.62) 2 (0.68) 3 (0.79) 4 (1.28)
N = 1000 3 (0.15) 3 (0.54) 3 (0.50) 4 (0.78) 5 (1.25)
N = 6174 3 (0.22) 3 (0.40) 3 (0.55) 3 (0.77) 4 (1.10)

Application

We apply the proposed model to data from an online tournament hosted on www.lichess.org [2],
where N = 6174 participants played multiple chess games with a time limit of one minute per game.
A player whos time runs out looses the game automatically. Before the start of each round, players
were presented with a risky decision : they could trade half of their clock time for the chance
to earn one additional tournament point if they won the game.

The following choice factors potentially influence this decision:

• the player’s rating and the rating difference to
their opponent,

• whether they have the first-move advantage,

• the remaining tournament time,

• a winning streak (which yields extra points),

• whether they opted for the risky option in the
previous round,

• whether they had lost in the previous round.

Model results

Factor Latent class probit Basic probit

Intercept -2.05 (0.03) -1.94 (0.01)
Rating -0.11 (0.01) -0.08 (0.01)
Having first move -0.04 (0.02) -0.02 (0.01)
Minutes remaining 0.04 (0.01) 0.04 (0.01)
On a winning streak -0.27 (0.03) -0.21 (0.02)
Took risk last round 1.21 (0.02) 1.82 (0.02)

Class 1 Class 2 Class 3

Proportion 54% (0.03) 36% (0.04) 10% (0.03)
Lost last round -0.98 (0.09) 0.03 (0.08) 1.10 (0.18) 0.18 (0.01)
Rating difference 0.10 (0.02) 0.98 (0.06) 1.65 (0.22) 0.52 (0.01)

The latent class model converged to three classes that characterize different types of players:

• Type 1 players are risk-averse, rarely choosing the risky option against lower-rated oppo-
nents or after losing in the previous round.

• Type 2 players decide independently of the previous game’s outcome.

• Type 3 players take more risks, with a higher likelihood of choosing the risky option after
a loss and favoring it against weaker opponents.
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Using the relative frequencies of the class allocation z, we can classify each player . For
example, the tournament winner is of type 2 with a probability of 78%, while the runner-up is of
type 1 with a probability of 94%.
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Median C for varying
N and δ with standard
deviations. Choice
data were simulated
based on the estimates
from the application.

Change in utility for
taking the risk (ceteris
paribus). Reported are
the marginal posterior
means with standard de-
viations. We fit both
models using 5000 Gibbs
iterations and set the
concentration δ = 1.


