Bayesian probit models for preference classification

An analysis of chess players' propensity for risk-taking

Lennart Oelschläger Dietmar Bauer lennart.oelschlaeger@uni-bielefeld.de dietmar.bauer@uni-bielefeld.de

Summary

- Marketing, transportation, psychology, and other fields use probit models to analyse **discrete choice behavior**. We propose a latent class model extension that allows for the **classification of decider preferences** without requiring the explicit specification of the number of classes.
- The model is estimated in a **Bayesian framework**, and the class number is determined by a **Dirichlet process**
- We apply the proposed method in the context of chess, where players are classified in three classes according to their **risk-taking propensity**.

Application

We apply the proposed model to data from an online tournament hosted on www.lichess.org [2], where N = 6174 participants played multiple chess games with a time limit of one minute per game. A player whos time runs out looses the game automatically. Before the start of each round, players were presented with a **risky decision** : they could trade half of their clock time for the chance to earn one additional tournament point if they won the game.

The following **<u>choice factors</u>** potentially influence this decision:

- the player's rating and the rating difference to their opponent,
- whether they have the first-move advantage,
- the remaining tournament time,

Bayesian probit models

Probit models are commonly rooted in the **random utility framework**. They assume that deciders assign utility values to discrete choice alternatives and seek to maximize them. The utilities are modeled as a linear function of observable and unobservable factors, where the latter are assumed to follow a multivariate normal distribution. Specifically, decider n's choice $y_{nt} \in \{1, \ldots, J\}$ at choice occasion t is explained through a matrix X_{nt} of choice characteristics as

$$y_{nt} = \arg \max U_{nt}, \quad U_{nt} = X_{nt}\beta + \varepsilon_{nt}, \quad \varepsilon_{nt} \sim N(0, \Sigma).$$
 (1)

We assume that (1) has been normalized for level and scale. A Bayesian analysis requires the computation of the **posterior density**

$$\Pr(\beta, \Sigma \mid y, X) \propto \Pr(\beta, \Sigma) \times L(\beta, \Sigma \mid y, X).$$
(2)

For the prior $\Pr(\beta, \Sigma)$, it is convenient to employ independent conjugate distributions, i.e. the normal for β and the inverse Wishart for Σ . The probit likelihood is the product of independent multinomial distributions

$$L(\beta, \Sigma \mid y, X) = \prod \Pr(y_{nt} = \arg \max U_{nt}).$$
 (3)

Evaluating (3) requires costly computations of the normal CDF due to the error specification in (1). Instead, we augment $(U_{nt})_{n,t}$ as parameters [1], following truncated normals, which yields a Gibbs sampling scheme to approximate (2).

- a winning streak (which yields extra points),
- whether they opted for the risky option in the previous round,
- whether they had lost in the previous round.

Model results

Factor	Latent class probit			Basic probit	
Intercept Rating Having first move Minutes remaining On a winning streak Took risk last round		$\begin{array}{c} -2.05 \ (0.03) \\ -0.11 \ (0.01) \\ -0.04 \ (0.02) \\ 0.04 \ (0.01) \\ -0.27 \ (0.03) \\ 1.21 \ (0.02) \end{array}$		$\begin{array}{l} -1.94 \ (0.01) \\ -0.08 \ (0.01) \\ -0.02 \ (0.01) \\ 0.04 \ (0.01) \\ -0.21 \ (0.02) \\ 1.82 \ (0.02) \end{array}$	Change in utility for taking the risk (ceteris paribus). Reported are the marginal posterior means with standard de- viations. We fit both models using 5000 Gibbs iterations and set the
	Class 1	Class 2	Class 3	_	concentration $\delta = 1$.
Proportion Lost last round Rating difference	54% (0.03) -0.98 (0.09) 0.10 (0.02)	0.03 (0.08)	$\begin{array}{c} 10\% \ (0.03) \\ 1.10 \ (0.18) \\ 1.65 \ (0.22) \end{array}$	$0.18 (0.01) \\ 0.52 (0.01)$	

The latent class model converged to three classes that characterize different types of players:

We provide an **implementation** of the Gibbs sampler in **R** via the {**RprobitB**} package [5].

Preference classification

To incorporate **preference heterogeneity**, we model random variation in the coefficient vector β across deciders using a Gaussian mixture with C classes:

$$\beta_n \sim \sum s_c N(b_c, \Omega_c), \tag{4}$$

where the weights $(s_c)_c$ are Dirichlet distributed with concentration $\delta > 0$. This

- provides an arbitrarily good approximation of the true underlying mixing distribution [4],
- and enables the classification of deciders with common expected preferences b_c and covariances Ω_c (our focus here).

To avoid the need to a priori select the number C of classes included, we impose a **Dirichlet process prior** $DP(G, \delta)$ on the distribution (4), where (assuming conjugate priors for b and Ω) the base distribution G is formed as the product of a normal and an inverse Wishart distribution [3]. The Dirichlet process integrates into the Gibbs sampler by iteratively updating $(b_c)_c$ and $(\Omega_c)_c$

- **Type 1 players** are risk-averse, rarely choosing the risky option against lower-rated opponents or after losing in the previous round.
- Type 2 players decide independently of the previous game's outcome.
- **Type 3 players** take more risks, with a higher likelihood of choosing the risky option after a loss and favoring it against weaker opponents.

Using the relative frequencies of the class allocation z, we can **classify each player**. For example, the tournament winner is of type 2 with a probability of 78%, while the runner-up is of type 1 with a probability of 94%.

using their posterior predictive distributions. The decider-specific assignments $z = (z_n)_n$ to either existing or new classes are updated via

$$\Pr(z_n = c \mid z_{-n}, \delta) = (N - 1 + \delta)^{-1} \cdot \begin{cases} |\{z_{-n} = c\}| & c = 1, \dots, C, \\ \delta & c = C + 1, \end{cases}$$
(5)

where z_{-n} denotes z excluding the n-th element, and N is the number of deciders.

The **impact of the concentration prior** δ on (5) diminishes as N increases, resulting in stable inference, as verified in our simulation:

$\delta = 0.1 \delta = 0.5 \delta = 1 \delta = 2 \delta = 10$	$\begin{array}{ c c c } Median & C & for \\ N & and & \delta & with s \end{array}$
$N = 100 1 \ (0.33) \ 2 \ (0.62) \ 2 \ (0.68) \ 3 \ (0.79) \ 4 \ (1.28)$	deviations.
$N = 1000 \ 3 \ (0.15) \ 3 \ (0.54) \ 3 \ (0.50) \ 4 \ (0.78) \ 5 \ (1.25)$	data were sit based on the es
$N = 6174 \ 3 \ (0.22) \ 3 \ (0.40) \ 3 \ (0.55) \ 3 \ (0.77) \ 4 \ (1.10)$	from the applic

varying standard Choice simulated estimates ication.

SCAN ME

[1] Imai, K. and van Dyk, D. A. (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation. Journal of Econometrics, 124.2, 311-334.

[2] Lichess API (2023). https://lichess.org/api/tournament/RibHfoX6. Data accessed on 17 February 2023.

[3] Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of computational and graphical statistics, 9(2), 249–265.

[4] Oelschläger, L. and Bauer, D. (2021). Bayes Estimation of Latent Class Mixed Multinomial Probit Models. TRB 100th Annual Meeting.

[5] Oelschläger, L., Bauer, D., Büscher, S., and Batram, M. (2022). RprobitB: Bayesian Probit Choice Modeling. R package version 1.1.2, accessible via https://CRAN.R-project.org/package=RprobitB.