

Facilitating probit likelihood optimization

Lennart Oelschläger Dietmar Bauer

Bielefeld University, Empirical Methods Department, Econometrics Group

12 September 2023

- 1 The multinomial probit model: purpose and estimation
- 2 Numerical optimization and the initialization effect
- 3 Our initialization strategy for probit likelihood optimization
- 4 How does the strategy perform in comparison to random initialization?
- 5 Takeaways

1 The multinomial probit model: purpose and estimation

- 2 Numerical optimization and the initialization effect
- 3 Our initialization strategy for probit likelihood optimization
- 4 How does the strategy perform in comparison to random initialization?

One of the most important questions (for me) when attending a conference ...

One of the most important questions (for me) when attending a conference ... where to sleep?

One of the most important questions (for me) when attending a conference ... where to sleep?

This is a discrete choice setting:

- deciders choose among a discrete set of alternatives
- based on decider- and/or alternative-specific attributes.

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Formally, the model

- connects attributes *X_n*
- to the choice $y_n \in \{1, \ldots, J\}$
- via latent utilities U_n that are defined as
 - 1. a linear function $V_n = X_n \beta$
 - 2. plus a Gaussian error ε_n
- assuming that deciders seek to maximize their utility.

Formally, the model

- connects attributes X_n
- to the choice $y_n \in \{1, \ldots, J\}$
- via latent utilities U_n that are defined as
 - 1. a linear function $V_n = X_n \beta$
 - 2. plus a Gaussian error ε_n
- assuming that deciders seek to maximize their utility.

In formulas:

 $U_n = V_n + \varepsilon_n$ $V_n = X_n\beta$ $\varepsilon_n \sim N(0, \Sigma)$ $y_n = \arg \max U_n$

Formally, the model

- connects attributes X_n
- to the choice $y_n \in \{1, \ldots, J\}$
- via latent utilities U_n that are defined as
 - 1. a linear function $V_n = X_n \beta$
 - 2. plus a Gaussian error ε_n
- assuming that deciders seek to maximize their utility.

Under this model, the choice probability for alternative $j \in \{1, \ldots, J\}$ equals

$$P_{n,j} = \Phi(-\Delta_j X_n \beta \mid 0; \Delta_j \Sigma \Delta'_j).$$

 \Im Technical detail: the operator Δ_j takes utility differences with respect to alternative *j* for identification. Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

 $U_n = V_n + \varepsilon_n$ $V_n = X_n\beta$ $\varepsilon_n \sim N(0, \Sigma)$ $y_n = \arg \max U_n$

Formally, the model

- connects attributes X_n
- to the choice $y_n \in \{1, \ldots, J\}$
- via latent utilities U_n that are defined as
 - 1. a linear function $V_n = X_n \beta$
 - 2. plus a Gaussian error ε_n
- assuming that deciders seek to maximize their utility.

Under this model, the choice probability for alternative $j \in \{1, \ldots, J\}$ equals

$$P_{n,j} = \Phi(-\Delta_j X_n \beta \mid 0; \Delta_j \Sigma \Delta'_j).$$

This involves evaluating the Gaussian CDF, which has no closed form.

 \Im Technical detail: the operator Δ_j takes utility differences with respect to alternative j for identification. Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

In formulas:

 $U_n = V_n + \varepsilon_n$ $V_n = X_n\beta$ $\varepsilon_n \sim N(0, \Sigma)$ $y_n = \arg \max U_n$

How to fit this model to observed choice data $(X_n, y_n)_n$?

How to fit this model to observed choice data $(X_n, y_n)_n$? The widely used procedure is to

1. define the log-likelihood function

UNIVERSITÄT

Faculty of Business Administration

$$\ell(\beta, \Sigma \mid X, y) = \sum_{n,j} \mathbb{1}(y_n = j) \log P_{n,j}$$

2. and maximize it numerically over the parameters (β, Σ) .

♀ Technical detail: Σ is a restricted matrix but can be parametrized as a vector. Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

How to fit this model to observed choice data $(X_n, y_n)_n$? The widely used procedure is to

1. define the log-likelihood function

INIVERSITÄT

culty of Business Administration

$$\ell(\beta, \Sigma \mid X, y) = \sum_{n,j} \mathbb{1}(y_n = j) \log P_{n,j}$$

2. and maximize it numerically over the parameters (β, Σ) .

But this involves two challenges:

- \blacksquare curse of dimensionality \Rightarrow optimization becomes slow
- \blacksquare approximation required \Rightarrow optimization becomes unstable

 $\ensuremath{\,\mathbb{G}}$ Technical detail: Σ is a restricted matrix but can be parametrized as a vector.

Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

How to fit this model to observed choice data $(X_n, y_n)_n$? The widely used procedure is to

1. define the log-likelihood function

INIVERSITÄT

of Business Administration

$$\ell(eta, \Sigma \mid X, y) = \sum_{n,j} \mathbb{1}(y_n = j) \log P_{n,j}$$

2. and maximize it numerically over the parameters (β, Σ) .

But this involves two challenges:

- \blacksquare curse of dimensionality \Rightarrow optimization becomes slow
- \blacksquare approximation required \Rightarrow optimization becomes unstable

Research question: How to make probit estimation faster and more reliable?

 $\ensuremath{\mathbbmath{\mathbb{Y}}}$ Technical detail: Σ is a restricted matrix but can be parametrized as a vector.

Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

- 3 Our initialization strategy for probit likelihood optimization
- 4 How does the strategy perform in comparison to random initialization?

5 Takeaway

Depending on θ_0 , the optimization

Depending on θ_0 , the optimization

- 🔳 works fine 🙂
- 🔳 does not work 🙁

Depending on θ_0 , the optimization

- 🔳 works fine 🙂
- 🔳 does not work 🙁
- 🔳 takes an eternity 😴

Depending on θ_0 , the optimization

- 🔳 works fine 🙂
- 🔳 does not work 🙁
- 🔳 takes an eternity 😴

Aim to initialize close to the global optimum

- 1. to reduce computation time and
- 2. to avoid local optima.

1 The multinomial probit model: purpose and estimation

- 2 Numerical optimization and the initialization effect
- 3 Our initialization strategy for probit likelihood optimization
- 4 How does the strategy perform in comparison to random initialization?

Initialization strategy

For the numerical optimization of the probit log-likelihood function

$$\ell(\beta, \Sigma \mid X, y) = \sum_{n,j} \mathbb{1}(y_n = j) \log P_{n,j}$$

we can quickly find consistent initial values

- β_0 via exploiting a constant utility direction,
- and Σ_0 conditional on β_0 via Gibbs sampling.

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific $\beta,$ e.g., travel time)

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific $\beta,$ e.g., travel time)

Let

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

_1

-1

0

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

2 X1

3

_1

-1

0

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

$$\binom{\beta_1}{\beta_2} = \binom{1}{2}$$

2 X1

3

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

$$\binom{\beta_1}{\beta_2} = \binom{1}{2}$$

Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} eta_1 \\ eta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

 $\binom{\beta_1}{\beta_2} = \binom{1}{2}$

We find the direction

 $\overrightarrow{\begin{pmatrix}1\\0.5\end{pmatrix}} = \overrightarrow{\begin{pmatrix}1/\beta_1\\1/\beta_2\end{pmatrix}}$

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

 $\binom{\beta_1}{\beta_2} = \binom{1}{2}$

We find the direction

 $\overrightarrow{\begin{pmatrix}1\\0.5\end{pmatrix}} = \overrightarrow{\begin{pmatrix}1/\beta_1\\1/\beta_2\end{pmatrix}}$

Initialize β

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} eta_1 \\ eta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

$$\binom{\beta_1}{\beta_2} = \binom{1}{2}$$

We find the direction

 $\overrightarrow{\begin{pmatrix}1\\0.5\end{pmatrix}} = \overrightarrow{\begin{pmatrix}1/\beta_1\\1/\beta_2\end{pmatrix}}$

Initialize β

Assume

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} eta_1 \\ eta_2 \end{pmatrix}$$

(such a definition is typical for alternative-varying X with alternative-specific β , e.g., travel time)

Let

 $\binom{\beta_1}{\beta_2} = \binom{1}{2}$

We find the direction

 $\overrightarrow{\begin{pmatrix} 1\\ 0.5 \end{pmatrix}} = \overrightarrow{\begin{pmatrix} 1/\beta_1\\ 1/\beta_2 \end{pmatrix}}$

(depends on the unknown β)

Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

(depends on the unknown eta)

but we observe the choices y.

Initialize β

(depends on the unknown β) but we observe the choices γ .

They are disturbed by the error-term $\varepsilon.$ (here I used $\Sigma=\begin{pmatrix}2&1\\1&2\end{pmatrix}$)

Initialize β

(depends on the unknown β) but we observe the choices y.

They are disturbed by the error-term $\varepsilon.$ (here I used $\Sigma=\begin{pmatrix}2&1\\1&2\end{pmatrix}$)

But we can still identify

 $\overrightarrow{\begin{pmatrix} 1/\beta_1 \\ 1/\beta_2 \end{pmatrix}}$

as the kernel of Cor(X, y).

(constant choice probability in this direction)

Initialize β

(depends on the unknown β) but we observe the choices y.

They are disturbed by the error-term $\varepsilon.$ (here I used $\Sigma=\begin{pmatrix}2&1\\1&2\end{pmatrix}$)

But we can still identify

 $\overrightarrow{\begin{pmatrix} 1/\beta_1 \\ 1/\beta_2 \end{pmatrix}}$

as the kernel of Cor(X, y).

(constant choice probability in this direction)

This gives an initial estimator $\hat{\beta}_0$ that can be shown to <u>consistent</u> as $N \to \infty$.

Initialize Σ

Now that we have a guess β_0 , we can draw Σ conditional on β_0 :

- 1. $(U_n)_n \mid \Sigma, \beta_0, (X_n, y_n)_n \sim \text{truncated normal}$
- 2. $\Sigma \mid \beta_0, (U_n)_n \sim \text{inverse Wishart}$

1 The multinomial probit model: purpose and estimation

- 2 Numerical optimization and the initialization effect
- 3 Our initialization strategy for probit likelihood optimization
- 4 How does the strategy perform in comparison to random initialization?

Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ ; true parameters and random initial values were drawn from a standard normal distribution. Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ ; true parameters and random initial values were drawn from a standard normal distribution. Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ ; true parameters and random initial values were drawn from a standard normal distribution. Lennart Oelschläger Dietmar Bauer | Facilitating probit likelihood optimization

1 The multinomial probit model: purpose and estimation

- 2 Numerical optimization and the initialization effect
- 3 Our initialization strategy for probit likelihood optimization
- 4 How does the strategy perform in comparison to random initialization?

5 Takeaways

- Probit models are widely used in discrete choice applications.
- But estimation quickly becomes computational challenging.
- Our initialization idea improves optimization time and convergence rate.

- Probit models are widely used in discrete choice applications.
- But estimation quickly becomes computational challenging.
- Our initialization idea improves optimization time and convergence rate.

Thanks for your attention! Do you have any questions or comments?

lennart.oelschlaeger@uni-bielefeld.de
loelschlaeger.de/talks