Facilitating probit likelihood optimization

Lennart Oelschläger Dietmar Bauer
Bielefeld University, Empirical Methods Department, Econometrics Group

12 September 2023

Outline

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

3 Our initialization strategy for probit likelihood optimization

4 How does the strategy perform in comparison to random initialization?

5 Takeaways

Outline

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

3 Our initialization strategy for probit likelihood optimization

4 How does the strategy perform in comparison to random initialization?

5 Takeaways

Model motivation
$\boldsymbol{\epsilon} \sim \boldsymbol{\Sigma}$
and Economics
One of the most important questions (for me) when attending a conference

Model motivation
Faculty of Busines
and Economics
One of the most important questions (for me) when attending a conference ... where to sleep?

Model motivation

Faculty of Business Administration
and Economics
One of the most important questions (for me) when attending a conference ... where to sleep?

This is a discrete choice setting:

- deciders choose among a discrete set of alternatives
- based on decider- and/or alternative-specific attributes.

Model motivation

Faculty of Business Administration
and EConomics

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)

■ marketing (Apple vs. Samsung vs. ...)

- transportation (private vehicle vs. public transport vs. bike vs. ...)

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)

■ marketing (Apple vs. Samsung vs. ...)
■ transportation (private vehicle vs. public transport vs. bike vs. ...)

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)
and can answer questions like
- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)
and can answer questions like
- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)
and can answer questions like
- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)
and can answer questions like
- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)
and can answer questions like
- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Model motivation

The multinomial probit model is widely used to analyze such discrete choices in fields like

- politics (Ampel vs. opposition vs. non-voter)
- marketing (Apple vs. Samsung vs. ...)
- transportation (private vehicle vs. public transport vs. bike vs. ...)
and can answer questions like
- What is the probability of each choice being made?
- Which attributes greatly influence decisions?
- How are attribute trade-offs made?
- Do different population segments choose differently?
- What is the impact of new choice alternatives?

Model definition

Formally, the model

- connects attributes X_{n}
- to the choice $y_{n} \in\{1, \ldots, J\}$
- via latent utilities U_{n} that are defined as

1. a linear function $V_{n}=X_{n} \beta$
2. plus a Gaussian error ε_{n}

■ assuming that deciders seek to maximize their utility.

Formally, the model

- connects attributes X_{n}
- to the choice $y_{n} \in\{1, \ldots, J\}$
- via latent utilities U_{n} that are defined as

1. a linear function $V_{n}=X_{n} \beta$
2. plus a Gaussian error ε_{n}

■ assuming that deciders seek to maximize their utility.

In formulas:

$$
\begin{aligned}
& U_{n}=V_{n}+\varepsilon_{n} \\
& V_{n}=X_{n} \beta \\
& \varepsilon_{n} \sim N(0, \Sigma) \\
& y_{n}=\arg \max U_{n}
\end{aligned}
$$

Model definition

Formally, the model

- connects attributes X_{n}
- to the choice $y_{n} \in\{1, \ldots, J\}$
- via latent utilities U_{n} that are defined as

1. a linear function $V_{n}=X_{n} \beta$
2. plus a Gaussian error ε_{n}

In formulas:

$$
\begin{aligned}
& U_{n}=V_{n}+\varepsilon_{n} \\
& V_{n}=X_{n} \beta \\
& \varepsilon_{n} \sim N(0, \Sigma) \\
& y_{n}=\arg \max U_{n}
\end{aligned}
$$

■ assuming that deciders seek to maximize their utility.
Under this model, the choice probability for alternative $j \in\{1, \ldots, J\}$ equals

$$
P_{n, j}=\Phi\left(-\Delta_{j} X_{n} \beta \mid 0 ; \Delta_{j} \Sigma \Delta_{j}^{\prime}\right)
$$

8 Technical detail: the operator Δ_{j} takes utility differences with respect to alternative j for identification.

Model definition

Formally, the model

- connects attributes X_{n}
- to the choice $y_{n} \in\{1, \ldots, J\}$

■ via latent utilities U_{n} that are defined as

1. a linear function $V_{n}=X_{n} \beta$
2. plus a Gaussian error ε_{n}

In formulas:

$$
\begin{aligned}
& U_{n}=V_{n}+\varepsilon_{n} \\
& V_{n}=X_{n} \beta \\
& \varepsilon_{n} \sim N(0, \Sigma) \\
& y_{n}=\arg \max U_{n}
\end{aligned}
$$

■ assuming that deciders seek to maximize their utility.
Under this model, the choice probability for alternative $j \in\{1, \ldots, J\}$ equals

$$
P_{n, j}=\Phi\left(-\Delta_{j} X_{n} \beta \mid 0 ; \Delta_{j} \Sigma \Delta_{j}^{\prime}\right)
$$

This involves evaluating the Gaussian CDF, which has no closed form.
8 Technical detail: the operator Δ_{j} takes utility differences with respect to alternative j for identification.

Model estimation

How to fit this model to observed choice data $\left(X_{n}, y_{n}\right)_{n}$?

Model estimation

How to fit this model to observed choice data $\left(X_{n}, y_{n}\right)_{n}$? The widely used procedure is to

1. define the log-likelihood function

$$
\ell(\beta, \Sigma \mid X, y)=\sum_{n, j} 1\left(y_{n}=j\right) \log P_{n, j}
$$

2. and maximize it numerically over the parameters (β, Σ).
[^0]
Model estimation

How to fit this model to observed choice data $\left(X_{n}, y_{n}\right)_{n}$? The widely used procedure is to

1. define the log-likelihood function

$$
\ell(\beta, \Sigma \mid X, y)=\sum_{n, j} 1\left(y_{n}=j\right) \log P_{n, j}
$$

2. and maximize it numerically over the parameters (β, Σ).

But this involves two challenges:
■ curse of dimensionality \Rightarrow optimization becomes slow
■ approximation required \Rightarrow optimization becomes unstable

[^1]
Model estimation

How to fit this model to observed choice data $\left(X_{n}, y_{n}\right)_{n}$? The widely used procedure is to

1. define the log-likelihood function

$$
\ell(\beta, \Sigma \mid X, y)=\sum_{n, j} 1\left(y_{n}=j\right) \log P_{n, j}
$$

2. and maximize it numerically over the parameters (β, Σ).

But this involves two challenges:
■ curse of dimensionality \Rightarrow optimization becomes slow
■ approximation required \Rightarrow optimization becomes unstable
Research question: How to make probit estimation faster and more reliable?
\& Technical detail: Σ is a restricted matrix but can be parametrized as a vector.

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

3 Our initialization strategy for probit likelihood optimization

4 How does the strategy perform in comparison to random initialization?

5 Takeaways

Numerical optimization of $\ell(\theta)$ means iteratively adjusting θ to find the globally best $\ell(\theta)$. And most algorithms need to start at some user-defined initial value θ_{0}.

Numerical optimization of $\ell(\theta)$ means iteratively adjusting θ to find the globally best $\ell(\theta)$. And most algorithms need to start at some user-defined initial value θ_{0}.

Depending on θ_{0}, the optimization

- works fine \square

Numerical optimization of $\ell(\theta)$ means iteratively adjusting θ to find the globally best $\ell(\theta)$. And most algorithms need to start at some user-defined initial value θ_{0}.

Depending on θ_{0}, the optimization

- works fine

■ does not work :

Numerical optimization of $\ell(\theta)$ means iteratively adjusting θ to find the globally best $\ell(\theta)$. And most algorithms need to start at some user-defined initial value θ_{0}.

Depending on θ_{0}, the optimization

- works fine
- does not work \because
- takes an eternity

Numerical optimization of $\ell(\theta)$ means iteratively adjusting θ to find the globally best $\ell(\theta)$. And most algorithms need to start at some user-defined initial value θ_{0}.

Depending on θ_{0}, the optimization

- works fine
- does not work \because
- takes an eternity

Aim to initialize close to the global optimum

1. to reduce computation time and
2. to avoid local optima.

Outline

Faculty of Business Administration
and Economics

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

3 Our initialization strategy for probit likelihood optimization

4 How does the strategy perform in comparison to random initialization?

5 Takeaways

Initialization strategy

For the numerical optimization of the probit log-likelihood function

$$
\ell(\beta, \Sigma \mid X, y)=\sum_{n, j} 1\left(y_{n}=j\right) \log P_{n, j}
$$

we can quickly find consistent initial values

- β_{0} via exploiting a constant utility direction,
- and Σ_{0} conditional on β_{0} via Gibbs sampling.
$\boldsymbol{\epsilon} \sim \Sigma$

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)
$\boldsymbol{\epsilon} \sim \Sigma$

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)

Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

$\epsilon \sim \Sigma$

Covariate space

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)

Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)

Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

$\boldsymbol{\epsilon} \sim \Sigma$

Covariate space

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)

Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)
Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

We find the direction

$$
\overrightarrow{\binom{1}{0.5}}=\overrightarrow{\binom{1 / \beta_{1}}{1 / \beta_{2}}}
$$

in which $\Delta V=V_{1}-V_{2}=$ const.
$\boldsymbol{\epsilon} \sim \Sigma$

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)
Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

We find the direction

$$
\overrightarrow{\binom{1}{0.5}}=\overrightarrow{\binom{1 / \beta_{1}}{1 / \beta_{2}}}
$$

in which $\Delta V=V_{1}-V_{2}=$ const.

Simulated data with $N=1000$

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)
Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

We find the direction

$$
\overrightarrow{\binom{1}{0.5}}=\overrightarrow{\binom{1 / \beta_{1}}{1 / \beta_{2}}}
$$

in which $\Delta V=V_{1}-V_{2}=$ const.

Assume

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}
$$

(such a definition is typical for alternative-varying X with alternative-specific β, e.g., travel time)
Let

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{1}{2}
$$

We find the direction

$$
\overrightarrow{\binom{1}{0.5}}=\overrightarrow{\binom{1 / \beta_{1}}{1 / \beta_{2}}}
$$

in which $\Delta V=V_{1}-V_{2}=$ const.

We do not observe ΔV

(depends on the unknown β)

We do not observe ΔV
(depends on the unknown β)
but we observe the choices y.

We do not observe ΔV
(depends on the unknown β)
but we observe the choices y.
They are disturbed by the error-term ε.

$$
\text { (here } I \text { used } \Sigma=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \text {) }
$$

We do not observe ΔV
(depends on the unknown β)
but we observe the choices y.
They are disturbed by the error-term ε.

$$
\text { (here } I \text { used } \Sigma=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \text {) }
$$

But we can still identify

$$
\overrightarrow{\binom{1 / \beta_{1}}{1 / \beta_{2}}}
$$

as the kernel of $\operatorname{Cor}(X, y)$.
(constant choice probability in this direction)

Initialize β

Simulated data with $\mathrm{N}=1000$

We do not observe ΔV
(depends on the unknown β)
but we observe the choices y.
They are disturbed by the error-term ε.

$$
\text { (here I used } \left.\Sigma=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\right)
$$

But we can still identify

$$
\binom{1 / \beta_{1}}{1 / \beta_{2}}
$$

as the kernel of $\operatorname{Cor}(X, y)$.
(constant choice probability in this direction)
This gives an initial estimator $\hat{\beta}_{0}$ that can be shown to consistent as $N \rightarrow \infty$.

Initialize Σ

Now that we have a guess β_{0}, we can draw Σ conditional on β_{0} :

1. $\left(U_{n}\right)_{n} \mid \Sigma, \beta_{0},\left(X_{n}, y_{n}\right)_{n} \sim$ truncated normal
2. $\Sigma \mid \beta_{0},\left(U_{n}\right)_{n} \sim$ inverse Wishart

Outline
Faculty of Business Administration
and Economics

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

3 Our initialization strategy for probit likelihood optimization

4 How does the strategy perform in comparison to random initialization?

5 Takeaways

100 simulated data sets with 200 deciders and 3 alternatives

Initialization: at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 100 deciders and 2 alternatives
Initialization: at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 100 deciders and 3 alternatives

Initialization: 且 at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

ts with 100 deciders and 4 alternatives
100 simulated data sets with 100 deciders and 4 alternatives
Initialization: \boldsymbol{T} at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 200 deciders and 2 alternatives

Initialization: Tr at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 200 deciders and 4 alternatives

Initialization: fr at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 1000 deciders and 2 alternatives

Initialization: Tr at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 1000 deciders and 3 alternatives
Initialization: the at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

100 simulated data sets with 1000 deciders and 4 alternatives
Initialization: fr at random with our strategy

8 Simulation details: one alternative-varying regressor connected to alternative-varying coefficients; fully flexible Σ; true parameters and random initial values were drawn from a standard normal distribution.

1 The multinomial probit model: purpose and estimation

2 Numerical optimization and the initialization effect

3 Our initialization strategy for probit likelihood optimization

4 How does the strategy perform in comparison to random initialization?

5 Takeaways

Takeaways

$\epsilon \sim \Sigma$

- Probit models are widely used in discrete choice applications.

■ But estimation quickly becomes computational challenging.
■ Our initialization idea improves optimization time and convergence rate.

- Probit models are widely used in discrete choice applications.
- But estimation quickly becomes computational challenging.

■ Our initialization idea improves optimization time and convergence rate.

Thanks for your attention! Do you have any questions or comments?

- lennart.oelschlaeger@uni-bielefeld.de
- loelschlaeger.de/talks

[^0]: 8 Technical detail: Σ is a restricted matrix but can be parametrized as a vector.

[^1]: 8 Technical detail: Σ is a restricted matrix but can be parametrized as a vector.
 Lennart Oelschläger

