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Example: Buying a new car

Consumer has the choice:

Entities that try to understand the choice process:

Manufacturers (What to produce?)

Retailers (How to sell?)

Politicians (How to change behavior?)

Image source https://www.linkedin.com/pulse/best-choice-ice-vehicles-vs-evs-hybrid-how-shaping-up-kulkarni
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Random utility model approach

→


UBEV

UPHEV

UHEV

UICE



= Xβ + ε = U → choice = argmaxU

X is a matrix of decider and / or alternatives attributes

β is to be estimated, encodes how X influences U and is of primary interest

ε is the random error, typically ε ∼ MVN(0,Σ) (probit) or ε ∼ iid EV (logit)
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Typical choice attributes X

Image source Helveston et al. (2015)
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How to interpret β

Sign: βAcceleration time < 0

Magnitude: βOperating cost ≶ βPurchase price (after standardization)

Substitution: βBEV fast-charge

βPurchase price
(willingness to pay)

But is a constant β across deciders realistic?

In general, no, we should assume that people are heterogeneous in their choice behavior.
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Ignored variance in β

1. Simulated 200 data sets from probit model with β ∼ N(b,Ω) where Ω = ρ

[
1 0.5

0.5 1

]
2. Estimated probit model with Ω = 0 fixed as well as Ω flexible
3. Computed relative loss when Ω = 0 in average out-of-sample predicted choice probabilities
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How to model variation in β?

Three options:

1. Control for heterogeneity via exogenous regressors (in many cases infeasible)

2. Fixed effects: βn for each decider n (would need many choice occasions per decider)

3. Random effects: βn ∼ F (instead of βn, estimate F )

If we opt for option 3 (most people in practice do), we need to decide

how much structure we want to impose on F ,

how to estimate F .
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Parametric F

In their paper, each βp ∼ iid N(µp , σ
2
p), for example:

P(βOperating cost (China) > 0) = 15%P(βOperating cost (China) > 0) = 15%P(βOperating cost (China) > 0) = 15%
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Estimates from Helveston et al. (2015)
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F as a mixture

F =
C∑

c=1
acFc , for example Fc = MVN(bc ,Ωc):

1
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Basic probit

estimate−2

−1
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βRating difference

β L
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nd

� more flexible

� allows for classification

� harder to estimate

� class number C ?

Image source Oelschläger and Bauer (2023) Another option: Non-parametric F
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Two estimation methods

Likelihood optimization Posterior sampling

Iteration 425

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)
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Comparison of approximation
β ∼ N(0, 1), number of choice occasions per decider: T = 1
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Comparison in different data scenarios

80 simulated data sets from each combination of:

Number of deciders N ∈ {50, 100}

Number of choices per decider T ∈ {10, 20}

Number of choice alternatives J ∈ {2, 3}

Number of random effects P ∈ {1, 2}
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Comparison in different data scenarios
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Relative difference in out−of−sample LL
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Comparison in different data scenarios
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Takeaways and outlook

Ignoring unobserved choice behavior heterogeneity decreases prediction power

Modeling methods available with trade-off between flexibility and numerical feasibility

In the parametric case, frequentist and Bayes estimation have similar out-of-sample
prediction power but Bayes estimation becomes faster with rising J and T

Next steps (ICMC in April):
• also compare mixture models and non-parametric methods
• apply the methods to the car purchase data set from the beginning

Thanks for your attention! Do you have any comments or questions for me?
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Appendix: Non-parametric F

F̂ (β) =
R∑

r=1
θ̂r 1(βr ≤ β), for example:

� / � even more flexible

� even harder to estimate

� grid size R ?

Image source Heiss et al. (2022)
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Appendix: Convergence of Gibbs sampler
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