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Consumer has the choice:

PHEV BEV

Electric Vehicle Vehicle

Image source https://www.linkedin.com/pulse/best-choice-ice-vehicles-vs-evs-hybrid-how-shaping-up-kulkarni
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Consumer has the choice: Entities that try to understand the choice process:

m Manufacturers (What to produce?)

m Retailers (How to sell?)

m Politicians (How to change behavior?)

Conventional
vehicle Vehicle Electric Vehicle Vehicle

o e ———

Image source https://www.linkedin.com/pulse/best-choice-ice-vehicles-vs-evs-hybrid-how-shaping-up-kulkarni
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m X is a matrix of decider and / or alternatives attributes
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m X is a matrix of decider and / or alternatives attributes

m 3 is to be estimated, encodes how X influences U and is of primary interest
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m X is a matrix of decider and / or alternatives attributes
m (3 is to be estimated, encodes how X influences U and is of primary interest

m € is the random error, typically € ~ MVN(0, ) (probit) or € ~ iid EV (logit)
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Attribute”

Vehicle Type ©

Brand ©
Purchase Price
Fast Charging Capability ©

Operating Cost (Equivalent

Gasoline Fuel Efficiency) @

0to 60 mph Acceleration
Time*'©

Image source Helveston et al. (2015)

Option 1

Conventional iﬂ
300 mile range on 1 tank

Typical choice attributes X

ion 2

PlugIn Hybrid iﬂ o M

300 mile range on 1 tank
(first 40 miles electric)

Option 3

Electric "

75 mile range on full charge

German American Japanese
§18,000 $32,000 $24,000
- Mot Availahle Available

19 cents per mile
(20 MPG equivalent)

12 cents per mile
(30 MPG equivalent)

6 cents per mile
(60 MPG equivalent)

8.5 seconds (Medium-Slow)

8.5 seconds (Medium-Slow)

7 seconds (Medium-Fast)

o
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Typical choice attributes X

Attribute” Option 1 ion 2 Option 3
Conventional Plucrin Hybrid & Electric
Vehidle Type © n i Hyorid ) &
300 mile range on 1 tank 300 mile range on 1 tank 75 mile range on full charge
(first 40 miles electric)
Brand © German American Japanese
Purchase Price © §18,000 $32,000 $24,000
Fast Charging Capability © - Mot Availahle Available

Operating Cost (Equivalent
Gasoline Fuel Efficiency) @

0to 60 mph Acceleration
Time*"

Image source Helveston et al. (2015)

19 cents per mile
(20 MPG equivalent)

12 cents per mile
(30 MPG equivalent)

6 cents per mile
(60 MPG equivalent)
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u Sign: BAcceIeration time < 0

Lennart Oelschliger | Modeling unobserved choice behavior heterogeneity 5/ 12



B How to interpret 3 € ~ L

m— Faculty of Business Administration
ics

u Sign: BAcceleration time < 0

m Magnitude: Boperating cost S BPurchase price (after standardization)

Lennart Oelschliger | Modeling unobserved choice behavior heterogeneity 5/ 12



B How to interpret 3 € ~ L

m— Faculty of Business Administration
and Economics

u Sign: BAcceleration time < 0

m Magnitude: Boperating cost S BPurchase price (after standardization)

6BEV fast-charge (

m Substitution: willingness to pay)

ﬂPurchase price
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u Sign: BAcceleration time < 0

m Magnitude: Boperating cost S BPurchase price (after standardization)

6BEV fast-charge (

m Substitution: willingness to pay)

ﬂPurchase price

But is a constant 3 across deciders realistic?
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u Sign: BAcceleration time < 0

m Magnitude: Boperating cost S BPurchase price (after standardization)

6BEV fast-charge (

m Substitution: willingness to pay)

5Purchase price
But is a constant 3 across deciders realistic?

In general, no, we should assume that people are heterogeneous in their choice behavior.
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Mumr lgnored variance in 3 €~ |

1. Simulated 200 data sets from probit model with 8 ~ N(b, Q) where Q = p [

1 0.5]
2. Estimated probit model with €2 = 0 fixed as well as € flexible

05 1

3. Computed relative loss when €2 = 0 in average out-of-sample predicted choice probabilities
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Ignored variance in 3 E:E

1 0.5]

1. Simulated 200 data sets from probit model with 8 ~ N(b, Q) where Q = p [0 51

2. Estimated probit model with €2 = 0 fixed as well as € flexible

3. Computed relative loss when €2 = 0 in average out-of-sample predicted choice probabilities

20%

-20%

Relative prediction difference
.

g
4[
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Three options:
1. Control for heterogeneity via exogenous regressors (in many cases infeasible)
2. Fixed effects: 3, for each decider n (would need many choice occasions per decider)

3. Random effects: 3, ~ F (instead of 3,, estimate F)

~
-
o
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Three options:
1. Control for heterogeneity via exogenous regressors (in many cases infeasible)
2. Fixed effects: 3, for each decider n (would need many choice occasions per decider)
3. Random effects: 3, ~ F (instead of 3,, estimate F)
If we opt for option 3 (most people in practice do), we need to decide
® how much structure we want to impose on F,

m how to estimate F.

~
-
o
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In order to relax some limiting assumptions from the basic logit model (e.g. the independence from irrelevant alternatives
(IIA) property (Train, 2009)), we also apply a random coefficients mixed logit model (McFadden and Train, 2000) in the WTP
space, which allows for heterogeneity of preferences across the populatlon and more general substltutlon patterns. While
the basic logit model effectively
&, the mixed logit model instead assumes rhat the ¥, coefficients are drawn from a parametric distribution.'' Following con-
‘ventlon we assume each element 7;; of the vector v, is drawn from an independent normal distribution, where ; ~ N(;, a7).
We assume a fixed (non-random) o; coefficient for all mixed logit models. While WTP could also be computed from a preference

space mixed logit model post hoc, Train and Weels (2005) show that such estimates have unreasonably large variance in com-
parison to those from a WTP space model.

Lennart Oelschliger | Modeling unobserved choice behavior heterogeneity



SuEsiT Parametric F EHE

m— Faculty of Business Administration
ics

In their paper, each 8, ~ iid N(up,ag), for example:

4 . China
B s

Density

P(Boperating cost (China) > 0) = 15%

-10 -5 0 5

BOperating cost
Estimates from Helveston et al. (2015)
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C
F= E acF., for example F. = MVN(b., ©2.):
c=1
1
g o
&
Basic probit
-2 estimate
0 1 2

Brating difference

Image source Oelschlager and Bauer (2023)

Lennart Oelschliger | Modeling unobserved choice behavior heterogeneity



L F as a mixture EHE

m— Faculty of Business Administration
ics

C
F= E acF., for example F. = MVN(b., ©2.):
c=1
1 s more flexible
go ol allows for classification
& .
i@ harder to estimate
Basic probit
-2 estimate
i@ class number C ?
0 1 2

BRa!ing difference

Image source Oelschliger and Bauer (2023)
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Bayes versus frequentist estimation for parametric mixing distribution
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Likelihood optimization Posterior sampling

B

IM . M /W“ %w

Chain

—2
Q
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5 3800
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B ~ N(0,1), number of choice occasions per decider: T =1

— Likelihood optimization — Posterior sampling
1.00
0.75

&

8 0.50
0.25
0.00

R 2 [ H )

[
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B ~ N(0,1), number of choice occasions per decider: T =10

— Likelihood optimization — Posterior sampling
1.00
0.75
3 0.50
0.25
0.00

R 2 [ H )

[
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80 simulated data sets from each combination of:

m Number of deciders N € {50,100}
m Number of choices per decider T € {10,20}
m Number of choice alternatives J € {2,3}

m Number of random effects P € {1,2}
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Relative difference in estimation time Relative difference in out—of-sample LL
higher values are cases where Bayes is faster higher values are cases where Bayes fit is worse
6 000% 0% i
' L[]
-50%
4000%
-100% .
(]
° -150%
2 000% -
-200%
0% ! -250% ?
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Relative difference in estimation time Relative difference in out-of-sample LL
higher values are cases where Bayes is faster higher values are cases where Bayes fit is worse
500% $ 5% %
L]
L3
o
400% 2 '
b 0%
300% !
-5% °
200% 3
L]
100% -10%
0%
-15% .
L |
-100% ! *
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Relative difference in estimation time Relative difference in out-of-sample LL
higher values are cases where Bayes is faster higher values are cases where Bayes fit is worse
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Ignoring unobserved choice behavior heterogeneity decreases prediction power
m Modeling methods available with trade-off between flexibility and numerical feasibility

m In the parametric case, frequentist and Bayes estimation have similar out-of-sample
prediction power but Bayes estimation becomes faster with rising J and T

Next steps (ICMC in April):
® also compare mixture models and non-parametric methods
® apply the methods to the car purchase data set from the beginning
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Ignoring unobserved choice behavior heterogeneity decreases prediction power
m Modeling methods available with trade-off between flexibility and numerical feasibility

m In the parametric case, frequentist and Bayes estimation have similar out-of-sample
prediction power but Bayes estimation becomes faster with rising J and T

Next steps (ICMC in April):
® also compare mixture models and non-parametric methods
® apply the methods to the car purchase data set from the beginning

Thanks for your attention! Do you have any comments or questions for me? «
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R

F(B) = Zér 1(B, < B), for example:
r=1

ol / '@ even more flexible
i@ even harder to estimate

i@ grid size R 7

Image source Heiss et al. (2022)
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