The function dwishart()
computes the density of a Wishart distribution.
The function rwishart()
samples from a Wishart distribution.
The functions with suffix _cpp
perform no input checks, hence are faster.
Usage
dwishart_cpp(x, df, scale, log = FALSE, inv = FALSE)
rwishart_cpp(df, scale, inv = FALSE)
dwishart(x, df, scale, log = FALSE, inv = FALSE)
rwishart(df, scale, inv = FALSE)
See also
Other simulation helpers:
correlated_regressors()
,
ddirichlet_cpp()
,
dmvnorm_cpp()
,
dtnorm_cpp()
,
simulate_markov_chain()
Examples
x <- diag(2)
df <- 4
scale <- diag(2)
# compute density
dwishart(x = x, df = df, scale = scale)
#> [1] 0.01463746
dwishart(x = x, df = df, scale = scale, log = TRUE)
#> [1] -4.224171
dwishart(x = x, df = df, scale = scale, inv = TRUE)
#> [1] 0.01463746
# sample
rwishart(df = df, scale = scale)
#> [,1] [,2]
#> [1,] 0.6650380 0.1224501
#> [2,] 0.1224501 0.8699886
rwishart(df = df, scale = scale, inv = TRUE)
#> [,1] [,2]
#> [1,] 4.148210 -1.427351
#> [2,] -1.427351 3.290400