Skip to contents

Alternating optimization (AO) is an iterative process for optimizing a real-valued function jointly over all its parameters by alternating restricted optimization over parameter partitions.

Usage

ao(
  f,
  initial,
  target = NULL,
  npar = NULL,
  gradient = NULL,
  hessian = NULL,
  ...,
  partition = "sequential",
  new_block_probability = 0.3,
  minimum_block_number = 1,
  minimize = TRUE,
  lower = NULL,
  upper = NULL,
  iteration_limit = Inf,
  seconds_limit = Inf,
  tolerance_value = 1e-06,
  tolerance_parameter = 1e-06,
  tolerance_parameter_norm = function(x, y) sqrt(sum((x - y)^2)),
  tolerance_history = 1,
  base_optimizer = Optimizer$new("stats::optim", method = "L-BFGS-B"),
  verbose = FALSE,
  hide_warnings = TRUE,
  add_details = TRUE
)

Arguments

f

[function]
A function to be optimized, returning a single numeric value.

The first argument of f should be a numeric of the same length as initial, optionally followed by any other arguments specified by the ... argument.

If f is to be optimized over an argument other than the first, or more than one argument, this has to be specified via the target argument.

initial

[numeric() | list()]
The starting parameter values for the target argument(s).

This can also be a list of multiple starting parameter values, see details.

target

[character() | NULL]
The name(s) of the argument(s) over which f gets optimized.

This can only be numeric arguments.

Can be NULL (default), then it is the first argument of f.

npar

[integer()]
The length(s) of the target argument(s).

Must be specified if more than two target arguments are specified via the target argument.

Can be NULL if there is only one target argument, in which case npar is set to be length(initial).

gradient

[function | NULL]
Optionally a function that returns the gradient of f.

The function call of gradient must be identical to f.

Ignored if base_optimizer does not support custom gradient.

hessian

[function | NULL]
Optionally a function that returns the Hessian of f.

The function call of hessian must be identical to f.

Ignored if base_optimizer does not support custom Hessian.

...

Additional arguments to be passed to f (and gradient).

partition

[character(1) | list()]
Defines the parameter partition, and can be either

  • "sequential" for treating each parameter separately,

  • "random" for a random partition in each iteration,

  • "none" for no partition (which is equivalent to joint optimization),

  • or a list of vectors of parameter indices, specifying a custom partition for the AO process.

This can also be a list of multiple partition definitions, see details.

new_block_probability

[numeric(1)]
Only relevant if partition = "random".

The probability for a new parameter block when creating a random partition.

Values close to 0 result in larger parameter blocks, values close to 1 result in smaller parameter blocks.

minimum_block_number

[integer(1)]
Only relevant if partition = "random".

The minimum number of blocks in random partitions.

minimize

[logical(1)]
Minimize during the AO process?

If FALSE, maximization is performed.

lower, upper

[numeric() | NULL]
Optionally lower and upper parameter bounds.

Ignored if base_optimizer does not support parameter bounds.

iteration_limit

[integer(1) | Inf]
The maximum number of iterations through the parameter partition before the AO process is terminated.

Can also be Inf for no iteration limit.

seconds_limit

[numeric(1)]
The time limit in seconds before the AO process is terminated.

Can also be Inf for no time limit.

Note that this stopping criteria is only checked after a sub-problem is solved and not within solving a sub-problem, so the actual process time can exceed this limit.

tolerance_value

[numeric(1)]
A non-negative tolerance value. The AO process terminates if the absolute difference between the current function value and the one before tolerance_history iterations is smaller than tolerance_value.

Can be 0 for no value threshold.

tolerance_parameter

[numeric(1)]
A non-negative tolerance value. The AO process terminates if the distance between the current estimate and the before tolerance_history iterations is smaller than tolerance_parameter.

Can be 0 for no parameter threshold.

By default, the distance is measured using the euclidean norm, but another norm can be specified via the tolerance_parameter_norm argument.

tolerance_parameter_norm

[function]
The norm that measures the distance between the current estimate and the one from the last iteration. If the distance is smaller than tolerance_parameter, the AO process is terminated.

It must be of the form function(x, y) for two vector inputs x and y, and return a single numeric value. By default, the euclidean norm function(x, y) sqrt(sum((x - y)^2)) is used.

tolerance_history

[integer(1)]
The number of iterations to look back to determine whether tolerance_value or tolerance_parameter has been reached.

base_optimizer

[Optimizer | list()]
An Optimizer object, which can be created via Optimizer. It numerically solves the sub-problems.

By default, the optim optimizer with method = "L-BFGS-B" is used.

This can also be a list of multiple base optimizers, see details.

verbose

[logical(1)]
Print tracing details during the AO process?

Not supported when using multiple processes, see details.

hide_warnings

[logical(1)]
Hide warnings during the AO process?

add_details

[logical(1)]
Add details about the AO process to the output?

Value

A list with the following elements:

  • estimate is the parameter vector at termination.

  • value is the function value at termination.

  • details is a data.frame with information about the AO process: For each iteration (column iteration) it contains the function value (column value), parameter values (columns starting with p followed by the parameter index), the active parameter block (columns starting with b followed by the parameter index, where 1 stands for a parameter contained in the active parameter block and 0 if not), and computation times in seconds (column seconds). Only available if add_details = TRUE.

  • seconds is the overall computation time in seconds.

  • stopping_reason is a message why the AO process has terminated.

In the case of multiple processes, the output changes slightly, see details.

Details

Multiple processes

AO can suffer from local optima. To increase the likelihood of reaching the global optimum, you can specify:

  • multiple starting parameters

  • multiple parameter partitions

  • multiple base optimizers

Use the initial, partition, and/or base_optimizer arguments to provide a list of possible values for each parameter. Each combination of initial values, parameter partitions, and base optimizers will create a separate AO process.

Output value

In the case of multiple processes, the output values refer to the optimal (with respect to function value) AO processes.

If add_details = TRUE, the following elements are added:

  • estimates is a list of optimal parameters in each process.

  • values is a list of optimal function values in each process.

  • details combines details of the single processes and has an additional column process with an index for the different processes.

  • seconds_each gives the computation time in seconds for each process.

  • stopping_reasons gives the termination message for each process.

  • processes give details how the different processes were specified.

Parallel computation

By default, processes run sequentially. However, since they are independent, they can be parallelized. To enable parallel computation, use the {future} framework. For example, run the following before the ao() call:


future::plan(future::multisession, workers = 4)

Progress updates

When using multiple processes, setting verbose = TRUE to print tracing details during AO is not supported. However, you can still track the progress using the {progressr} framework. For example, run the following before the ao() call:


progressr::handlers(global = TRUE)
progressr::handlers(
  progressr::handler_progress(":percent :eta :message")
)

Examples

# Example 1: Minimization of Himmelblau's function --------------------------

himmelblau <- function(x) (x[1]^2 + x[2] - 11)^2 + (x[1] + x[2]^2 - 7)^2
ao(f = himmelblau, initial = c(0, 0))
#> $estimate
#> [1]  3.584428 -1.848126
#> 
#> $value
#> [1] 9.606386e-12
#> 
#> $details
#>    iteration        value       p1        p2 b1 b2     seconds
#> 1          0 1.700000e+02 0.000000  0.000000  0  0 0.000000000
#> 2          1 1.327270e+01 3.395691  0.000000  1  0 0.029929161
#> 3          1 1.743664e+00 3.395691 -1.803183  0  1 0.005084753
#> 4          2 2.847290e-02 3.581412 -1.803183  1  0 0.003878355
#> 5          2 4.687468e-04 3.581412 -1.847412  0  1 0.003504515
#> 6          3 7.368057e-06 3.584381 -1.847412  1  0 0.002986193
#> 7          3 1.164202e-07 3.584381 -1.848115  0  1 0.027847767
#> 8          4 1.893311e-09 3.584427 -1.848115  1  0 0.002520084
#> 9          4 9.153860e-11 3.584427 -1.848124  0  1 0.001846313
#> 10         5 6.347425e-11 3.584428 -1.848124  1  0 0.001850128
#> 11         5 9.606386e-12 3.584428 -1.848126  0  1 0.001845360
#> 
#> $seconds
#> [1] 0.08129263
#> 
#> $stopping_reason
#> [1] "change in function value between 1 iteration is < 1e-06"
#> 

# Example 2: Maximization of 2-class Gaussian mixture log-likelihood --------

# target arguments:
# - class means mu (2, unrestricted)
# - class standard deviations sd (2, must be non-negative)
# - class proportion lambda (only 1 for identification, must be in [0, 1])

normal_mixture_llk <- function(mu, sd, lambda, data) {
  c1 <- lambda * dnorm(data, mu[1], sd[1])
  c2 <- (1 - lambda) * dnorm(data, mu[2], sd[2])
  sum(log(c1 + c2))
}

set.seed(123)

ao(
  f = normal_mixture_llk,
  initial = runif(5),
  target = c("mu", "sd", "lambda"),
  npar = c(2, 2, 1),
  data = datasets::faithful$eruptions,
  partition = list("sequential", "random", "none"),
  minimize = FALSE,
  lower = c(-Inf, -Inf, 0, 0, 0),
  upper = c(Inf, Inf, Inf, Inf, 1),
  add_details = FALSE
)
#> $estimate
#> [1] 2.0186087 4.2733443 0.2356257 0.4370632 0.3484053
#> 
#> $value
#> [1] -276.36
#> 
#> $seconds
#> [1] 0.3547113
#> 
#> $stopping_reason
#> [1] "change in function value between 1 iteration is < 1e-06"
#>