Log-likelihood function of a Gaussian-hidden Markov model
Arguments
- theta
A
numeric
vector of model parameters.The first
N*(N-1)
elements are the logarithms of the non-diagonal elements of the transition probability matrix.The next
N
elements are the mean values of the state-dependent normal distributions.The last
N
elements are the logarithms of the standard deviations of the state-dependent normal distributions.
- data
A
numeric
vector, the time series data.- N
An
integer
, the number of states.- neg
Set to
TRUE
to return the negative log-likelihood value.
Examples
theta <- c(-1, -1, -2, 2, 0.5, 0.5)
data <- sim_hmm(Tp = 1000, N = 2, theta = theta)
f_ll_hmm(theta = theta, data = data, N = 2)
#> [1] -2278.964
# \donttest{
nlm(f_ll_hmm, p = theta, data = data, N = 2, neg = TRUE)$estimate
#> Warning: NA/Inf replaced by maximum positive value
#> [1] -0.8295929 -1.0619608 -1.7896455 2.1832781 0.5091347 0.4173019
# }