This function creates an object of class RprobitB_fit.
Usage
RprobitB_fit(
  data,
  scale,
  level,
  normalization,
  R,
  B,
  Q,
  latent_classes,
  prior,
  gibbs_samples,
  class_sequence,
  comp_time
)
# S3 method for class 'RprobitB_fit'
print(x, ...)
# S3 method for class 'RprobitB_fit'
summary(object, FUN = c(mean = mean, sd = stats::sd, `R^` = R_hat), ...)
# S3 method for class 'summary.RprobitB_fit'
print(x, digits = 2, ...)Arguments
- data
 An object of class
RprobitB_data.- scale
 [
character(1)]
A character which determines the utility scale. It is of the form<parameter> := <value>, where<parameter>is either the name of a fixed effect orSigma_<j>,<j>for the<j>th diagonal element ofSigma, and<value>is the value of the fixed parameter.- normalization
 An object of class
RprobitB_normalization.- R
 [
integer(1)]
The number of iterations of the Gibbs sampler.- B
 [
integer(1)]
The length of the burn-in period.- Q
 [
integer(1)]
The thinning factor for the Gibbs samples.- latent_classes
 [
list()|NULL]
Optionally parameters specifying the number of latent classes and their updating scheme. The values in brackets are the default.C(1): The fixed number (greater or equal 1) of (initial) classes.wb_update(FALSE): Set toTRUEfor weight-based class updates.dp_update(FALSE): Set toTRUEfor Dirichlet process class updates.Cmax(10): The maximum number of latent classes.
The following specifications are used for the weight-based updating scheme:
buffer(50): The number of iterations to wait before the next update.epsmin(0.01): The threshold weight for removing a latent class.epsmax(0.7): The threshold weight for splitting a latent class.deltamin(0.1): The minimum mean distance before merging two classes.deltashift(0.5): The scale for shifting the class means after a split.
- prior
 [
list]
A named list of parameters for the prior distributions. See the documentation ofcheck_priorfor details about which parameters can be specified.- gibbs_samples
 An object of class
RprobitB_gibbs_samples.- class_sequence
 The sequence of class numbers during Gibbs sampling of length
R.- comp_time
 The time spent for Gibbs sampling.
