Skip to contents

This function creates an object of class RprobitB_fit.

Usage

RprobitB_fit(
  data,
  scale,
  level,
  normalization,
  R,
  B,
  Q,
  latent_classes,
  prior,
  gibbs_samples,
  class_sequence,
  comp_time
)

# S3 method for class 'RprobitB_fit'
print(x, ...)

# S3 method for class 'RprobitB_fit'
summary(object, FUN = c(mean = mean, sd = stats::sd, `R^` = R_hat), ...)

# S3 method for class 'summary.RprobitB_fit'
print(x, digits = 2, ...)

Arguments

data

An object of class RprobitB_data.

scale

[character(1)]
A character which determines the utility scale. It is of the form <parameter> := <value>, where <parameter> is either the name of a fixed effect or Sigma_<j>,<j> for the <j>th diagonal element of Sigma, and <value> is the value of the fixed parameter.

normalization

An object of class RprobitB_normalization.

R

[integer(1)]
The number of iterations of the Gibbs sampler.

B

[integer(1)]
The length of the burn-in period.

Q

[integer(1)]
The thinning factor for the Gibbs samples.

latent_classes

[list() | NULL]
Optionally parameters specifying the number of latent classes and their updating scheme. The values in brackets are the default.

  • C (1): The fixed number (greater or equal 1) of (initial) classes.

  • wb_update (FALSE): Set to TRUE for weight-based class updates.

  • dp_update (FALSE): Set to TRUE for Dirichlet process class updates.

  • Cmax (10): The maximum number of latent classes.

The following specifications are used for the weight-based updating scheme:

  • buffer (50): The number of iterations to wait before the next update.

  • epsmin (0.01): The threshold weight for removing a latent class.

  • epsmax (0.7): The threshold weight for splitting a latent class.

  • deltamin (0.1): The minimum mean distance before merging two classes.

  • deltashift (0.5): The scale for shifting the class means after a split.

prior

[list]
A named list of parameters for the prior distributions. See the documentation of check_prior for details about which parameters can be specified.

gibbs_samples

An object of class RprobitB_gibbs_samples.

class_sequence

The sequence of class numbers during Gibbs sampling of length R.

comp_time

The time spent for Gibbs sampling.

Value

An object of class RprobitB_fit.