This function creates an object of class RprobitB_fit
.
Usage
RprobitB_fit(
data,
scale,
level,
normalization,
R,
B,
Q,
latent_classes,
prior,
gibbs_samples,
class_sequence,
comp_time
)
# S3 method for class 'RprobitB_fit'
print(x, ...)
# S3 method for class 'RprobitB_fit'
summary(object, FUN = c(mean = mean, sd = stats::sd, `R^` = R_hat), ...)
# S3 method for class 'summary.RprobitB_fit'
print(x, digits = 2, ...)
Arguments
- data
An object of class
RprobitB_data
.- scale
[
character(1)
]
A character which determines the utility scale. It is of the form<parameter> := <value>
, where<parameter>
is either the name of a fixed effect orSigma_<j>,<j>
for the<j>
th diagonal element ofSigma
, and<value>
is the value of the fixed parameter.- normalization
An object of class
RprobitB_normalization
.- R
[
integer(1)
]
The number of iterations of the Gibbs sampler.- B
[
integer(1)
]
The length of the burn-in period.- Q
[
integer(1)
]
The thinning factor for the Gibbs samples.- latent_classes
[
list()
|NULL
]
Optionally parameters specifying the number of latent classes and their updating scheme. The values in brackets are the default.C
(1
): The fixed number (greater or equal 1) of (initial) classes.wb_update
(FALSE
): Set toTRUE
for weight-based class updates.dp_update
(FALSE
): Set toTRUE
for Dirichlet process class updates.Cmax
(10
): The maximum number of latent classes.
The following specifications are used for the weight-based updating scheme:
buffer
(50
): The number of iterations to wait before the next update.epsmin
(0.01
): The threshold weight for removing a latent class.epsmax
(0.7
): The threshold weight for splitting a latent class.deltamin
(0.1
): The minimum mean distance before merging two classes.deltashift
(0.5
): The scale for shifting the class means after a split.
- prior
[
list
]
A named list of parameters for the prior distributions. See the documentation ofcheck_prior
for details about which parameters can be specified.- gibbs_samples
An object of class
RprobitB_gibbs_samples
.- class_sequence
The sequence of class numbers during Gibbs sampling of length
R
.- comp_time
The time spent for Gibbs sampling.