
Package index
-
check_form()
- Check model formula
-
overview_effects()
- Print effect overview
-
create_lagged_cov()
- Create lagged choice covariates
-
as_cov_names()
- Re-label alternative specific covariates
-
prepare_data()
- Prepare choice data for estimation
-
RprobitB_parameter()
print(<RprobitB_parameter>)
- Define probit model parameter
-
simulate_choices()
- Simulate choice data
-
train_test()
- Split choice data into train and test subset
-
RprobitB_data()
print(<RprobitB_data>)
summary(<RprobitB_data>)
print(<summary.RprobitB_data>)
plot(<RprobitB_data>)
- Create object of class
RprobitB_data
-
check_prior()
- Check prior parameters
-
fit_model()
- Fit probit model to choice data
-
update(<RprobitB_fit>)
- Update and re-fit probit model
-
transform(<RprobitB_fit>)
- Transform fitted probit model
-
coef(<RprobitB_fit>)
print(<RprobitB_coef>)
plot(<RprobitB_coef>)
- Extract model effects
-
cov_mix()
- Extract estimated covariance matrix of mixing distribution
-
point_estimates()
- Compute point estimates
-
choice_probabilities()
- Compute choice probabilities
-
classification()
- Preference-based classification of deciders
-
get_cov()
- Extract covariates of choice occasion
-
predict(<RprobitB_fit>)
- Predict choices
-
plot(<RprobitB_fit>)
- Visualize fitted probit model
-
plot_roc()
- Plot ROC curve
-
plot_mixture_contour()
- Plot bivariate contour of mixing distributions
-
plot_class_allocation()
- Plot class allocation (for
P_r = 2
only)
-
R_hat()
- Compute Gelman-Rubin statistic
-
mode_approx()
- Gibbs sample mode
-
model_selection()
print(<RprobitB_model_selection>)
- Compare fitted models
-
npar()
- Extract number of model parameters
-
mml()
print(<RprobitB_mml>)
plot(<RprobitB_mml>)
- Approximate marginal model likelihood
-
compute_p_si()
- Compute choice probabilities at posterior samples
-
pred_acc()
- Compute prediction accuracy
-
train_choice
- Stated Preferences for Train Traveling
-
d_to_gamma()
- Transform increments to thresholds
-
gibbs_sampler()
- Gibbs sampler for probit models
-
ll_ordered()
- Compute ordered probit log-likelihood
-
sample_allocation()
- Sample allocation
-
update_Omega()
- Update class covariances
-
update_Omega_c()
- Update covariance of a single class
-
update_Sigma()
- Update error covariance matrix
-
update_U()
- Update utility vector
-
update_U_ranked()
- Update ranked utility vector
-
update_b()
- Update class means
-
update_b_c()
- Update mean of a single class
-
update_classes_dp()
- Dirichlet process class updates
-
update_classes_wb()
- Weight-based class updates
-
update_coefficient()
- Update coefficient vector
-
update_d()
- Update utility threshold increments
-
update_m()
- Update class sizes
-
update_s()
- Update class weight vector
-
update_z()
- Update class allocation vector