Skip to contents

Data management

Use these functions for the choice data preparation or simulation.

check_form()
Check model formula
overview_effects()
Print effect overview
create_lagged_cov()
Create lagged choice covariates
as_cov_names()
Re-label alternative specific covariates
prepare_data()
Prepare choice data for estimation
RprobitB_parameter() print(<RprobitB_parameter>)
Define probit model parameter
simulate_choices()
Simulate choice data
train_test()
Split choice data into train and test subset
RprobitB_data() print(<RprobitB_data>) summary(<RprobitB_data>) print(<summary.RprobitB_data>) plot(<RprobitB_data>)
Create object of class RprobitB_data

Model fitting

Use these function for fitting a probit model to choice data.

check_prior()
Check prior parameters
fit_model()
Fit probit model to choice data
update(<RprobitB_fit>)
Update and re-fit probit model
transform(<RprobitB_fit>)
Transform fitted probit model

Model evaluation

Use these functions for model evaluation.

coef(<RprobitB_fit>) print(<RprobitB_coef>) plot(<RprobitB_coef>)
Extract model effects
cov_mix()
Extract estimated covariance matrix of mixing distribution
point_estimates()
Compute point estimates
choice_probabilities()
Compute choice probabilities
classification()
Preference-based classification of deciders
get_cov()
Extract covariates of choice occasion
predict(<RprobitB_fit>)
Predict choices
plot(<RprobitB_fit>)
Visualize fitted probit model
plot_roc()
Plot ROC curve
plot_mixture_contour()
Plot bivariate contour of mixing distributions
plot_class_allocation()
Plot class allocation (for P_r = 2 only)
R_hat()
Compute Gelman-Rubin statistic
mode_approx()
Gibbs sample mode

Model selection

Use these functions for model selection.

model_selection() print(<RprobitB_model_selection>)
Compare fitted models
npar()
Extract number of model parameters
mml() print(<RprobitB_mml>) plot(<RprobitB_mml>)
Approximate marginal model likelihood
compute_p_si()
Compute choice probabilities at posterior samples
pred_acc()
Compute prediction accuracy

Datasets

The following datasets are included in the package.

train_choice
Stated Preferences for Train Traveling

Posterior samplers

These functions define the Gibbs sampler.

d_to_gamma()
Transform increments to thresholds
gibbs_sampler()
Gibbs sampler for probit models
ll_ordered()
Compute ordered probit log-likelihood
sample_allocation()
Sample allocation
update_Omega()
Update class covariances
update_Omega_c()
Update covariance of a single class
update_Sigma()
Update error covariance matrix
update_U()
Update utility vector
update_U_ranked()
Update ranked utility vector
update_b()
Update class means
update_b_c()
Update mean of a single class
update_classes_dp()
Dirichlet process class updates
update_classes_wb()
Weight-based class updates
update_coefficient()
Update coefficient vector
update_d()
Update utility threshold increments
update_m()
Update class sizes
update_s()
Update class weight vector
update_z()
Update class allocation vector