Package index
-
check_form()
- Check model formula
-
overview_effects()
- Print effect overview
-
create_lagged_cov()
- Create lagged choice covariates
-
as_cov_names()
- Re-label alternative specific covariates
-
prepare_data()
- Prepare choice data for estimation
-
RprobitB_parameter()
- Define probit model parameter
-
simulate_choices()
- Simulate choice data
-
train_test()
- Split choice data in train and test subset
-
plot(<RprobitB_data>)
- Visualize choice data
-
check_prior()
- Check prior parameters
-
fit_model()
- Fit probit model to choice data
-
R_hat()
- Compute Gelman-Rubin statistic
-
update(<RprobitB_fit>)
- Update and re-fit probit model
-
transform(<RprobitB_fit>)
- Transform fitted probit model
-
coef(<RprobitB_fit>)
- Extract model effects
-
cov_mix()
- Extract estimated covariance matrix of mixing distribution
-
point_estimates()
- Compute point estimates
-
choice_probabilities()
- Compute choice probabilities
-
classification()
- Classify deciders preference-based
-
get_cov()
- Extract covariates of choice occasion
-
predict(<RprobitB_fit>)
- Predict choices
-
plot(<RprobitB_fit>)
- Visualize fitted probit model
-
plot_roc()
- Plot ROC curve
-
model_selection()
- Compare fitted models
-
npar()
- Extract number of model parameters
-
mml()
- Approximate marginal model likelihood
-
compute_p_si()
- Compute choice probabilities at posterior samples
-
pred_acc()
- Compute prediction accuracy
-
train_choice
- Stated Preferences for Train Traveling
-
dmvnorm()
- Density of multivariate normal distribution
-
rdirichlet()
- Draw from Dirichlet distribution
-
rmvnorm()
- Draw from multivariate normal distribution
-
rtnorm()
- Draw from one-sided truncated normal
-
rttnorm()
- Draw from two-sided truncated normal
-
rwishart()
- Draw from Wishart distribution
-
d_to_gamma()
- Transform threshold increments to thresholds
-
ll_ordered()
- Log-likelihood in the ordered probit model
-
update_Omega()
- Update class covariances
-
update_Sigma()
- Update error term covariance matrix of multiple linear regression
-
update_U()
- Update latent utility vector
-
update_U_ranked()
- Update latent utility vector in the ranked probit case
-
update_b()
- Update class means
-
update_d()
- Update utility threshold increments
-
update_m()
- Update class sizes
-
update_reg()
- Update coefficient vector of multiple linear regression
-
update_s()
- Update class weight vector
-
update_z()
- Update class allocation vector