
Package index
-
check_form() - Check model formula
-
overview_effects() - Print effect overview
-
create_lagged_cov() - Create lagged choice covariates
-
as_cov_names() - Re-label alternative specific covariates
-
prepare_data() - Prepare choice data for estimation
-
RprobitB_parameter()print(<RprobitB_parameter>) - Define probit model parameter
-
simulate_choices() - Simulate choice data
-
train_test() - Split choice data into train and test subset
-
RprobitB_data()print(<RprobitB_data>)summary(<RprobitB_data>)print(<summary.RprobitB_data>)plot(<RprobitB_data>) - Create object of class
RprobitB_data
-
check_prior() - Check prior parameters
-
fit_model() - Fit probit model to choice data
-
update(<RprobitB_fit>) - Update and re-fit probit model
-
transform(<RprobitB_fit>) - Transform fitted probit model
-
coef(<RprobitB_fit>)print(<RprobitB_coef>)plot(<RprobitB_coef>) - Extract model effects
-
cov_mix() - Extract estimated covariance matrix of mixing distribution
-
point_estimates() - Compute point estimates
-
choice_probabilities() - Compute choice probabilities
-
classification() - Preference-based classification of deciders
-
get_cov() - Extract covariates of choice occasion
-
predict(<RprobitB_fit>) - Predict choices
-
plot(<RprobitB_fit>) - Visualize fitted probit model
-
plot_roc() - Plot ROC curve
-
plot_mixture_contour() - Plot bivariate contour of mixing distributions
-
plot_class_allocation() - Plot class allocation (for
P_r = 2only)
-
R_hat() - Compute Gelman-Rubin statistic
-
mode_approx() - Gibbs sample mode
-
model_selection()print(<RprobitB_model_selection>) - Compare fitted models
-
npar() - Extract number of model parameters
-
mml()print(<RprobitB_mml>)plot(<RprobitB_mml>) - Approximate marginal model likelihood
-
compute_p_si() - Compute choice probabilities at posterior samples
-
pred_acc() - Compute prediction accuracy
-
train_choice - Stated Preferences for Train Traveling
-
d_to_gamma() - Transform increments to thresholds
-
gibbs_sampler() - Gibbs sampler for probit models
-
ll_ordered() - Compute ordered probit log-likelihood
-
sample_allocation() - Sample allocation
-
update_Omega() - Update class covariances
-
update_Omega_c() - Update covariance of a single class
-
update_Sigma() - Update error covariance matrix
-
update_U() - Update utility vector
-
update_U_ranked() - Update ranked utility vector
-
update_b() - Update class means
-
update_b_c() - Update mean of a single class
-
update_classes_dp() - Dirichlet process class updates
-
update_classes_wb() - Weight-based class updates
-
update_coefficient() - Update coefficient vector
-
update_d() - Update utility threshold increments
-
update_m() - Update class sizes
-
update_s() - Update class weight vector
-
update_z() - Update class allocation vector