This function creates an object of class RprobitB_parameter
, which
contains the parameters of a probit model.
If sample = TRUE
, missing parameters are sampled. All parameters are
checked against the values of P_f
, P_r
, J
, and N
.
Usage
RprobitB_parameter(
P_f,
P_r,
J,
N,
ordered = FALSE,
alpha = NULL,
C = NULL,
s = NULL,
b = NULL,
Omega = NULL,
Sigma = NULL,
Sigma_full = NULL,
beta = NULL,
z = NULL,
d = NULL,
seed = NULL,
sample = TRUE
)
Arguments
- P_f
The number of covariates connected to a fixed coefficient (can be 0).
- P_r
The number of covariates connected to a random coefficient (can be 0).
- J
The number (greater or equal 2) of choice alternatives.
- N
The number (greater or equal 1) of decision makers.
- ordered
A boolean,
FALSE
per default. IfTRUE
, the choice setalternatives
is assumed to be ordered from worst to best.- alpha
The fixed coefficient vector of length
P_f
. Set toNA
ifP_f = 0
.- C
The number (greater or equal 1) of latent classes of decision makers. Set to
NA
ifP_r = 0
. Otherwise,C = 1
per default.- s
The vector of class weights of length
C
. Set toNA
ifP_r = 0
. For identifiability, the vector must be non-ascending.- b
The matrix of class means as columns of dimension
P_r
xC
. Set toNA
ifP_r = 0
.- Omega
The matrix of class covariance matrices as columns of dimension
P_r*P_r
xC
. Set toNA
ifP_r = 0
.- Sigma
The differenced error term covariance matrix of dimension
J-1
xJ-1
with respect to alternativeJ
. In case ofordered = TRUE
, a numeric, the single error term variance.- Sigma_full
The error term covariance matrix of dimension
J
xJ
. Internally,Sigma_full
gets differenced with respect to alternativeJ
, so it becomes an identified covariance matrix of dimensionJ-1
xJ-1
.Sigma_full
is ignored ifSigma
is specified orordered = TRUE
.- beta
The matrix of the decision-maker specific coefficient vectors of dimension
P_r
xN
. Set toNA
ifP_r = 0
.- z
The vector of the allocation variables of length
N
. Set toNA
ifP_r = 0
.- d
The numeric vector of the logarithmic increases of the utility thresholds in the ordered probit case (
ordered = TRUE
) of lengthJ-2
.- seed
Set a seed for the sampling of missing parameters.
- sample
A boolean, if
TRUE
(default) missing parameters get sampled.
Value
An object of class RprobitB_parameter
, i.e. a named list with the
model parameters alpha
, C
, s
, b
, Omega
,
Sigma
, Sigma_full
, beta
, and z
.
Examples
RprobitB_parameter(P_f = 1, P_r = 2, J = 3, N = 10)
#> alpha : -1.4
#>
#> C : 1
#>
#> s : 1
#>
#> b : 2 x 1 matrix of doubles
#> [,1]
#> [1,] 0.6
#> [2,] -0.8
#>
#>
#> Omega : 4 x 1 matrix of doubles
#> [,1]
#> [1,] 1.44
#> [2,] -0.12
#> [3,] -0.12
#> [4,] 0.14
#>
#>
#> Sigma : 2 x 2 matrix of doubles
#> [,1] [,2]
#> [1,] 4.17 -0.09
#> [2,] -0.09 0.21
#>
#>
#> Sigma_full : 3 x 3 matrix of doubles
#> [,1] [,2] [,3]
#> [1,] 3.03 -0.67 -0.42
#> [2,] -0.67 0.18 0.13
#> [3,] -0.42 0.13 0.29
#>
#>
#> beta : 2 x 10 matrix of doubles
#> [,1] [,2] [,3] ... [,10]
#> [1,] -1.24 0.4 1.71 ... -1.07
#> [2,] -0.84 -1.07 -1.65 ... -0.8
#>
#>
#> z : double vector of length 10
#> 1 1 1 ... 1
#>
#> d : NA
#>