Skip to contents

Why should I use this package?

  1. With {RprobitB}1, you can model the choices made by deciders among a discrete set of alternatives. For example, think of tourists that want to book a flight to their holiday destination. The knowledge why they prefer a certain route over another is of great value for airlines, especially the customer’s willingness to pay for say a faster or more comfortable flight alternative.

  2. Different deciders value different choice attributes differently. For example, it is imaginable that business people place a higher value on flight time and are willing to pay more for a faster route alternative than vacationers. Such choice behavior heterogeneity can be addressed by {RprobitB}. Furthermore, the package enables to identify groups of deciders that share similar preferences.

  3. The package enables prediction of choice behavior when certain choice attributes change, for example the proportion of customers who will choose the competitor’s product in the event of a price increase.

  4. {RprobitB} can analyze binary, multivariate, ordered, and ranked choices, both in the cross-sectional and panel setting.

How can I use this package?

Working with {RprobitB} follows a clear workflow. The main functions can be grouped into ones for data management, model fitting, and model evaluation, see the flowchart below. The package can be used for two different purposes: (a) estimation of a model for given data and (b) estimation of a model for simulated data. Simulation typically serves to assess the properties of estimation algorithms either for research or in a bootstrap like fashion.

A typical workflow is as follows:

  1. Prepare a choice data set via the prepare_data() function or simulate data via simulate_choices(). Both functions return an RprobitB_data object that can be fed into the estimation routine. The train_test() allows to split the data into an estimation and a validation part. See the vignette on choice data for details.

  2. The estimation routine is called fit_model() and returns an RprobitB_fit object. The transform_fit() function allows to change normalization of the model after a model has been fitted. The details are documented in the vignettes on model fitting and on modeling heterogeneity.

  3. The RprobitB_fit object can be fed into coef() to show the covariate effects on the choices and into predict() to compute choice probabilities and forecast choice behavior if choice characteristics would change, see the vignette on choice prediction. The classification() function allows for preference-based decider classification.

  4. The function model_selection() compares arbitrary many competing RprobitB_fit objects by computing different model selection criteria, see the vignette on model selection.

The flowchart of {RprobitB}.