This function returns the choice probabilities of an RprobitB_fit
object.
Arguments
- x
An object of class
RprobitB_fit
.- data
Either
NULL
or an object of classRprobitB_data
. In the former case, choice probabilities are computed for the data that was used for model fitting. Alternatively, a new data set can be provided.- par_set
Specifying the parameter set for calculation and either
a function that computes a posterior point estimate (the default is
mean()
),"true"
to select the true parameter set,an object of class
RprobitB_parameter
.
Value
A data frame of choice probabilities with choice situations in rows and
alternatives in columns. The first two columns are the decider identifier
"id"
and the choice situation identifier "idc"
.
Examples
data <- simulate_choices(form = choice ~ covariate, N = 10, T = 10, J = 2)
x <- fit_model(data)
#> Computing sufficient statistics - 0 of 4
#> Computing sufficient statistics - 1 of 4
#> Computing sufficient statistics - 2 of 4
#> Computing sufficient statistics - 3 of 4
#> Computing sufficient statistics - 4 of 4
#> Gibbs sampler - 1 of 1000 iterations
#> Gibbs sampler - 10 of 1000 iterations
#> Gibbs sampler - 20 of 1000 iterations
#> Gibbs sampler - 30 of 1000 iterations
#> Gibbs sampler - 40 of 1000 iterations
#> Gibbs sampler - 50 of 1000 iterations
#> Gibbs sampler - 60 of 1000 iterations
#> Gibbs sampler - 70 of 1000 iterations
#> Gibbs sampler - 80 of 1000 iterations
#> Gibbs sampler - 90 of 1000 iterations
#> Gibbs sampler - 100 of 1000 iterations
#> Gibbs sampler - 110 of 1000 iterations
#> Gibbs sampler - 120 of 1000 iterations
#> Gibbs sampler - 130 of 1000 iterations
#> Gibbs sampler - 140 of 1000 iterations
#> Gibbs sampler - 150 of 1000 iterations
#> Gibbs sampler - 160 of 1000 iterations
#> Gibbs sampler - 170 of 1000 iterations
#> Gibbs sampler - 180 of 1000 iterations
#> Gibbs sampler - 190 of 1000 iterations
#> Gibbs sampler - 200 of 1000 iterations
#> Gibbs sampler - 210 of 1000 iterations
#> Gibbs sampler - 220 of 1000 iterations
#> Gibbs sampler - 230 of 1000 iterations
#> Gibbs sampler - 240 of 1000 iterations
#> Gibbs sampler - 250 of 1000 iterations
#> Gibbs sampler - 260 of 1000 iterations
#> Gibbs sampler - 270 of 1000 iterations
#> Gibbs sampler - 280 of 1000 iterations
#> Gibbs sampler - 290 of 1000 iterations
#> Gibbs sampler - 300 of 1000 iterations
#> Gibbs sampler - 310 of 1000 iterations
#> Gibbs sampler - 320 of 1000 iterations
#> Gibbs sampler - 330 of 1000 iterations
#> Gibbs sampler - 340 of 1000 iterations
#> Gibbs sampler - 350 of 1000 iterations
#> Gibbs sampler - 360 of 1000 iterations
#> Gibbs sampler - 370 of 1000 iterations
#> Gibbs sampler - 380 of 1000 iterations
#> Gibbs sampler - 390 of 1000 iterations
#> Gibbs sampler - 400 of 1000 iterations
#> Gibbs sampler - 410 of 1000 iterations
#> Gibbs sampler - 420 of 1000 iterations
#> Gibbs sampler - 430 of 1000 iterations
#> Gibbs sampler - 440 of 1000 iterations
#> Gibbs sampler - 450 of 1000 iterations
#> Gibbs sampler - 460 of 1000 iterations
#> Gibbs sampler - 470 of 1000 iterations
#> Gibbs sampler - 480 of 1000 iterations
#> Gibbs sampler - 490 of 1000 iterations
#> Gibbs sampler - 500 of 1000 iterations
#> Gibbs sampler - 510 of 1000 iterations
#> Gibbs sampler - 520 of 1000 iterations
#> Gibbs sampler - 530 of 1000 iterations
#> Gibbs sampler - 540 of 1000 iterations
#> Gibbs sampler - 550 of 1000 iterations
#> Gibbs sampler - 560 of 1000 iterations
#> Gibbs sampler - 570 of 1000 iterations
#> Gibbs sampler - 580 of 1000 iterations
#> Gibbs sampler - 590 of 1000 iterations
#> Gibbs sampler - 600 of 1000 iterations
#> Gibbs sampler - 610 of 1000 iterations
#> Gibbs sampler - 620 of 1000 iterations
#> Gibbs sampler - 630 of 1000 iterations
#> Gibbs sampler - 640 of 1000 iterations
#> Gibbs sampler - 650 of 1000 iterations
#> Gibbs sampler - 660 of 1000 iterations
#> Gibbs sampler - 670 of 1000 iterations
#> Gibbs sampler - 680 of 1000 iterations
#> Gibbs sampler - 690 of 1000 iterations
#> Gibbs sampler - 700 of 1000 iterations
#> Gibbs sampler - 710 of 1000 iterations
#> Gibbs sampler - 720 of 1000 iterations
#> Gibbs sampler - 730 of 1000 iterations
#> Gibbs sampler - 740 of 1000 iterations
#> Gibbs sampler - 750 of 1000 iterations
#> Gibbs sampler - 760 of 1000 iterations
#> Gibbs sampler - 770 of 1000 iterations
#> Gibbs sampler - 780 of 1000 iterations
#> Gibbs sampler - 790 of 1000 iterations
#> Gibbs sampler - 800 of 1000 iterations
#> Gibbs sampler - 810 of 1000 iterations
#> Gibbs sampler - 820 of 1000 iterations
#> Gibbs sampler - 830 of 1000 iterations
#> Gibbs sampler - 840 of 1000 iterations
#> Gibbs sampler - 850 of 1000 iterations
#> Gibbs sampler - 860 of 1000 iterations
#> Gibbs sampler - 870 of 1000 iterations
#> Gibbs sampler - 880 of 1000 iterations
#> Gibbs sampler - 890 of 1000 iterations
#> Gibbs sampler - 900 of 1000 iterations
#> Gibbs sampler - 910 of 1000 iterations
#> Gibbs sampler - 920 of 1000 iterations
#> Gibbs sampler - 930 of 1000 iterations
#> Gibbs sampler - 940 of 1000 iterations
#> Gibbs sampler - 950 of 1000 iterations
#> Gibbs sampler - 960 of 1000 iterations
#> Gibbs sampler - 970 of 1000 iterations
#> Gibbs sampler - 980 of 1000 iterations
#> Gibbs sampler - 990 of 1000 iterations
#> Gibbs sampler - 1000 of 1000 iterations
choice_probabilities(x)
#> id idc A B
#> 1 1 1 4.932177e-01 0.506782344
#> 2 1 2 9.517899e-01 0.048210140
#> 3 1 3 1.781420e-02 0.982185802
#> 4 1 4 9.737644e-01 0.026235575
#> 5 1 5 2.593394e-01 0.740660593
#> 6 1 6 1.394951e-01 0.860504918
#> 7 1 7 3.249789e-01 0.675021089
#> 8 1 8 7.228659e-01 0.277134143
#> 9 1 9 3.513767e-04 0.999648623
#> 10 1 10 4.797067e-01 0.520293289
#> 11 2 1 3.876312e-01 0.612368800
#> 12 2 2 8.399955e-01 0.160004513
#> 13 2 3 2.713725e-04 0.999728628
#> 14 2 4 1.285106e-01 0.871489416
#> 15 2 5 3.350039e-01 0.664996076
#> 16 2 6 3.720707e-02 0.962792932
#> 17 2 7 5.808553e-02 0.941914469
#> 18 2 8 8.505197e-03 0.991494803
#> 19 2 9 7.033465e-01 0.296653502
#> 20 2 10 1.239741e-01 0.876025855
#> 21 3 1 2.291752e-01 0.770824838
#> 22 3 2 5.344472e-02 0.946555279
#> 23 3 3 1.011996e-02 0.989880042
#> 24 3 4 7.280773e-01 0.271922685
#> 25 3 5 5.646351e-02 0.943536493
#> 26 3 6 5.180008e-02 0.948199915
#> 27 3 7 7.417511e-01 0.258248872
#> 28 3 8 1.382350e-02 0.986176505
#> 29 3 9 5.914428e-02 0.940855724
#> 30 3 10 8.361066e-01 0.163893396
#> 31 4 1 6.026618e-01 0.397338239
#> 32 4 2 3.493744e-02 0.965062562
#> 33 4 3 7.679173e-01 0.232082743
#> 34 4 4 2.145815e-01 0.785418498
#> 35 4 5 1.053219e-02 0.989467806
#> 36 4 6 2.062785e-01 0.793721471
#> 37 4 7 7.120449e-02 0.928795514
#> 38 4 8 2.253851e-01 0.774614880
#> 39 4 9 5.223427e-01 0.477657289
#> 40 4 10 9.134286e-01 0.086571441
#> 41 5 1 5.473963e-02 0.945260372
#> 42 5 2 3.272214e-01 0.672778585
#> 43 5 3 1.218131e-01 0.878186878
#> 44 5 4 8.789859e-02 0.912101413
#> 45 5 5 4.140010e-02 0.958599896
#> 46 5 6 1.876479e-01 0.812352092
#> 47 5 7 1.700860e-01 0.829914023
#> 48 5 8 2.401754e-01 0.759824603
#> 49 5 9 1.093627e-01 0.890637305
#> 50 5 10 1.038872e-01 0.896112795
#> 51 6 1 5.492245e-05 0.999945078
#> 52 6 2 2.333860e-01 0.766613954
#> 53 6 3 5.288959e-01 0.471104114
#> 54 6 4 6.309383e-02 0.936906175
#> 55 6 5 6.007168e-01 0.399283190
#> 56 6 6 8.657904e-01 0.134209572
#> 57 6 7 6.183260e-01 0.381674022
#> 58 6 8 8.375500e-01 0.162450007
#> 59 6 9 2.169853e-01 0.783014714
#> 60 6 10 4.873812e-05 0.999951262
#> 61 7 1 5.966253e-01 0.403374719
#> 62 7 2 1.501737e-04 0.999849826
#> 63 7 3 1.909438e-01 0.809056167
#> 64 7 4 3.998612e-01 0.600138798
#> 65 7 5 1.786103e-02 0.982138969
#> 66 7 6 3.365395e-03 0.996634605
#> 67 7 7 2.041831e-02 0.979581687
#> 68 7 8 3.357516e-01 0.664248405
#> 69 7 9 2.239267e-01 0.776073348
#> 70 7 10 9.976883e-01 0.002311711
#> 71 8 1 1.386012e-01 0.861398788
#> 72 8 2 4.841025e-01 0.515897468
#> 73 8 3 4.039655e-01 0.596034538
#> 74 8 4 1.532953e-01 0.846704731
#> 75 8 5 4.952403e-01 0.504759704
#> 76 8 6 9.841896e-01 0.015810364
#> 77 8 7 3.001694e-01 0.699830618
#> 78 8 8 4.280600e-04 0.999571940
#> 79 8 9 6.825799e-02 0.931742012
#> 80 8 10 5.062417e-01 0.493758274
#> 81 9 1 1.184241e-01 0.881575907
#> 82 9 2 3.123446e-01 0.687655373
#> 83 9 3 8.657735e-01 0.134226520
#> 84 9 4 3.558924e-01 0.644107607
#> 85 9 5 9.478017e-01 0.052198302
#> 86 9 6 8.202939e-01 0.179706098
#> 87 9 7 2.681820e-01 0.731817976
#> 88 9 8 3.595393e-02 0.964046070
#> 89 9 9 9.865736e-01 0.013426377
#> 90 9 10 3.428442e-01 0.657155751
#> 91 10 1 3.049607e-03 0.996950393
#> 92 10 2 8.544151e-02 0.914558493
#> 93 10 3 1.698517e-03 0.998301483
#> 94 10 4 9.860539e-01 0.013946058
#> 95 10 5 8.230816e-01 0.176918428
#> 96 10 6 7.981163e-01 0.201883666
#> 97 10 7 9.212081e-01 0.078791918
#> 98 10 8 2.366363e-05 0.999976336
#> 99 10 9 5.486260e-01 0.451374029
#> 100 10 10 6.423519e-01 0.357648061